-
Notifications
You must be signed in to change notification settings - Fork 23
Closed
Description
I can not find a way to graph ecs_cpu_seconds_total like I can for any other exporter we have that is returning CPU seconds.
- https://www.robustperception.io/understanding-machine-cpu-usage/
- https://stackoverflow.com/questions/34923788/prometheus-convert-cpu-user-seconds-to-cpu-usage/34930574#34930574
Anything im trying, is returning very large numbers that I do not understand.
When i check the /metrics in my browser I get
ecs_cpu_seconds_total{container="heartbeat",cpu="0"} 2.3798033553e+08
ecs_cpu_seconds_total{container="heartbeat",cpu="1"} 2.37868708e+08
ecs_cpu_seconds_total{container="log_router",cpu="0"} 9.787324061e+07
ecs_cpu_seconds_total{container="log_router",cpu="1"} 9.13804651e+07
ecs_cpu_seconds_total{container="prom_exporter",cpu="0"} 3.971903977e+07
ecs_cpu_seconds_total{container="prom_exporter",cpu="1"} 4.042450038e+07
When i query in prom
ecs_cpu_seconds_total{container="heartbeat", cpu="0", ecs_cluster="Cluster01", ecs_task_id="5ccd12509b6545519a62604d624f44d0", ecs_task_version="10", instance="10.1.111.137:9779", job="Heartbeat", metrics_path="1m/metrics"} | 247372377.12
ecs_cpu_seconds_total{container="heartbeat", cpu="1", ecs_cluster="Cluster01", ecs_task_id="5ccd12509b6545519a62604d624f44d0", ecs_task_version="10", instance="10.1.111.137:9779", job="Heartbeat", metrics_path="1m/metrics"} | 247288853.64
ecs_cpu_seconds_total{container="log_router", cpu="0", ecs_cluster="Cluster01", ecs_task_id="5ccd12509b6545519a62604d624f44d0", ecs_task_version="10", instance="10.1.111.137:9779", job="Heartbeat", metrics_path="1m/metrics"} | 101809511.73
ecs_cpu_seconds_total{container="log_router", cpu="1", ecs_cluster="Cluster01", ecs_task_id="5ccd12509b6545519a62604d624f44d0", ecs_task_version="10", instance="10.1.111.137:9779", job="Heartbeat", metrics_path="1m/metrics"} | 94857416.9
ecs_cpu_seconds_total{container="prom_exporter", cpu="0", ecs_cluster="Cluster01", ecs_task_id="5ccd12509b6545519a62604d624f44d0", ecs_task_version="10", instance="10.1.111.137:9779", job="Heartbeat", metrics_path="1m/metrics"} | 42798612.53
ecs_cpu_seconds_total{container="prom_exporter", cpu="1", ecs_cluster="Cluster01", ecs_task_id="5ccd12509b6545519a62604d624f44d0", ecs_task_version="10", instance="10.1.111.137:9779", job="Heartbeat", metrics_path="1m/metrics"} | 43040614.05
If I query rate(ecs_cpu_seconds_total[2m]) * 100
I get very large numbers, 304131.45438179886 and 376788.3762791756 for core 0 and 1 for the heartbeat container for instance.
If it matters, im using something close to this: https://github.com/dwp/docker-ecs-service-discovery Which is allowing prom to find the container.
The end goal is toi graph the CPU usage of each container.
Metadata
Metadata
Assignees
Labels
No labels