This repo provided the adjusted code to generate mnist-nd, the benchmarking dataset to disentangle the influence of dimensionality on the clustering performance.
Workshop Paper : MNIST-Nd: a set of naturalistic datasets to benchmark clustering across dimensions
@misc{turishcheva2024mnistndsetnaturalisticdatasets,
title={MNIST-Nd: a set of naturalistic datasets to benchmark clustering across dimensions},
author={Polina Turishcheva and Laura Hansel and Martin Ritzert and Marissa A. Weis and Alexander S. Ecker},
year={2024},
eprint={2410.16124},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2410.16124},
}
- We adjusted the PyTorch version of the following repo to train a m-VAE -https://github.com/jariasf/GMVAE.git
- We also adjusted code from here for early stopping - https://github.com/Bjarten/early-stopping-pytorch
- For TMM we used the implementation from - https://github.com/jlparki/mix_T