-
-
Notifications
You must be signed in to change notification settings - Fork 11.9k
Closed
Closed
Copy link
Labels
Description
Attempting to install numpy 1.17.3 on cygwin fails, with the only reported error message being invalid register for .seh_savexmm.
I can't figure out where this would be getting called, since the reported file is standard input and grepping the source for savexmm does not produce any obvious clues.
Reproducing code example:
python3 -m pip install numpy==1.17.3Error message:
Error message on third and subsequent compilations
...
gcc: build/src.cygwin-3.0.7-x86_64-3.5/numpy/core/src/umath/loops.c
{standard input}: Assembler messages:
{standard input}:4612: Error: invalid register for .seh_savexmm
{standard input}:4614: Error: invalid register for .seh_savexmm
{standard input}:4616: Error: invalid register for .seh_savexmm
{standard input}:4618: Error: invalid register for .seh_savexmm
{standard input}:4620: Error: invalid register for .seh_savexmm
{standard input}:4622: Error: invalid register for .seh_savexmm
{standard input}:6493: Error: invalid register for .seh_savexmm
{standard input}:6495: Error: invalid register for .seh_savexmm
{standard input}:6497: Error: invalid register for .seh_savexmm
{standard input}:6499: Error: invalid register for .seh_savexmm
{standard input}:6501: Error: invalid register for .seh_savexmm
{standard input}:6503: Error: invalid register for .seh_savexmm
{standard input}:6505: Error: invalid register for .seh_savexmm
numpy/core/src/umath/loops.c.src: In function ‘PyUFunc_e_e’:
numpy/core/src/umath/loops.c.src:77:1: warning: visibility attribute not supported in this configuration; ignored [-Wattributes]
}
^
...
numpy/core/src/umath/loops.c.src: In function ‘OBJECT_sign’:
numpy/core/src/umath/loops.c.src:2919:1: warning: visibility attribute not supported in this configuration; ignored [-Wattributes]
}
^
error: Command "gcc -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -ggdb -O2 -pipe -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -fstack-protector-strong --param=ssp-buffer-size=4 -fdebug-prefix-map=/usr/src/ports/python36/python36-3.6.9-1.x86_64/build=/usr/src/debug/python36-3.6.9-1 -fdebug-prefix-map=/usr/src/ports/python36/python36-3.6.9-1.x86_64/src/Python-3.6.9=/usr/src/debug/python36-3.6.9-1 -ggdb -O2 -pipe -Wall -Werror=format-security -Wp,-D_FORTIFY_SOURCE=2 -fstack-protector-strong --param=ssp-buffer-size=4 -fdebug-prefix-map=/usr/src/ports/python36/python36-3.6.9-1.x86_64/build=/usr/src/debug/python36-3.6.9-1 -fdebug-prefix-map=/usr/src/ports/python36/python36-3.6.9-1.x86_64/src/Python-3.6.9=/usr/src/debug/python36-3.6.9-1 -DNPY_INTERNAL_BUILD=1 -DHAVE_NPY_CONFIG_H=1 -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE=1 -D_LARGEFILE64_SOURCE=1 -DNO_ATLAS_INFO=1 -DHAVE_CBLAS -I/usr/local/include -I/usr/include -I/usr/include/suitesparse -Ibuild/src.cygwin-3.0.7-x86_64-3.6/numpy/core/src/umath -Ibuild/src.cygwin-3.0.7-x86_64-3.6/numpy/core/src/npymath -Ibuild/src.cygwin-3.0.7-x86_64-3.6/numpy/core/src/common -Inumpy/core/include -Ibuild/src.cygwin-3.0.7-x86_64-3.6/numpy/core/include/numpy -Inumpy/core/src/common -Inumpy/core/src -Inumpy/core -Inumpy/core/src/npymath -Inumpy/core/src/multiarray -Inumpy/core/src/umath -Inumpy/core/src/npysort -I/usr/include/python3.6m -Ibuild/src.cygwin-3.0.7-x86_64-3.6/numpy/core/src/common -Ibuild/src.cygwin-3.0.7-x86_64-3.6/numpy/core/src/npymath -Ibuild/src.cygwin-3.0.7-x86_64-3.6/numpy/core/src/common -Ibuild/src.cygwin-3.0.7-x86_64-3.6/numpy/core/src/npymath -c build/src.cygwin-3.0.7-x86_64-3.6/numpy/core/src/umath/loops.c -o build/temp.cygwin-3.0.7-x86_64-3.6/build/src.cygwin-3.0.7-x86_64-3.6/numpy/core/src/umath/loops.o -MMD -MF build/temp.cygwin-3.0.7-x86_64-3.6/build/src.cygwin-3.0.7-x86_64-3.6/numpy/core/src/umath/loops.o.d" failed with exit status 1
...
The first and second compilations produce different output before the block of errors, but are otherwise identical.
Numpy/Python version information:
Compiling numpy 1.17.3 on python 3.5.7 fails as described above.
Compiling numpy 1.17.0 on python 3.7.4 fails in the manner described above.
Numpy 1.16.5 built just fine and passed most tests.
How would I go about debugging this?