This repository contains PyTorch implementation for Unsupervised Point Cloud Completion and Segmentation by Generative Adversarial Autoencoding Network (NeurIPS 2022).
CUDA 10.2 ~ 11.1
python 3.7
torch 1.8.0 ~ 1.9.0
numpy
lmdb
msgpack-numpy
ninja
termcolor
tqdm
open3d 0.9.0
h5py
We successfully build the pointnet2 operation lib with CUDA 10.2 + torch 1.9.0 and CUDA 11.1 + torch 1.8.0, separately. It should work with PyTorch 1.9.0+.
cd util/pointnet2_ops_lib
python setup.py install
Download (NJU BOX code:ugaan, Baidu Yun code:d5ye) and extract our pretrained models to the log folder.
The log folder should be
log
├── scannet
│ ├── bookshelf
│ │ ├── model-240.pkl
│ │ └── model-480.pkl
│ ├── chair
| | └── ...
│ └── ...
├── scannet_scanobj
│ └── ...
└── scanobj
└── ...
Download (NJU Box code:ugaan, Baidu Yun code:9wle) and extract our dataset, s3dis, and scanobjectnn to the data folder. The data folder should be
data
├── modelnet
| └── ...
├── s3dis_coseg
├── scanobjectnn
├── shapenet
├── us_gt
└── ws
Evaluate segmentation results on our dataset.
python test_scannet.py --cate chair
Evaluate segmentation results on S3DIS using the weights trained on our dataset.
python test_s3dis.py --cate chair
Evaluate segmentation results on ScanObjectNN using the weights trained on our dataset.
python test_scannet_scanobj.py --cate chair
Evaluate segmentation results on ScanObjectNN using the weights trained on ScanObjectNN.
python test_scanobj.py --cate chair
Evaluate completion results on our dataset.
python test_scannet_com.py --cate chair
Train on our dataset.
python train_scannet.py --cate chair
Train on our dataset for ScanObjectNN.
python train_scannet_scanobj.py --cate chair
Train on ScanObjectNN.
python train_scanobj.py --cate chair
MIT License
If you find our work useful in your research, please consider citing:
@inproceedings{ma2022ugaan,
title={Unsupervised Point Cloud Completion and Segmentation by Generative Adversarial Autoencoding Network},
author={Ma, Changfeng and Yang, Yang and Guo, Jie and Pan, Fei and Wang, Chongjun and Guo, Yanwen},
booktitle={NeurIPS},
year={2022}
}