The implementation of novel efficient neural network ESFNet
git clone https://github.com/mrluin/ESFNet-Pytorch.git
cd ./ESFNet-Pytorch
conda env create -f environment.yml
conda activate esfnet
For training, you can use as an example the WHU Building Datase.
You would need to download the cropped aerial images. The 3rd option
Directory:
#root | -- train
| -- valid
| -- test
| -- save | -- {model.name} | -- datetime | -- ckpt-epoch{}.pth.format(epoch)
| | -- best_model.pth
|
| -- log | -- {model.name} | -- datetime | -- history.txt
| -- test| -- log | -- {model.name} | --datetime | -- history.txt
| -- predict | -- {model.name} | --datetime | -- *.png
- set
root_dirin./configs/config.cfg, change the root_path like mentioned above. - set
divice_idto choose which GPU will be used. - set
epochsto control the length of the training phase. - setup the
train.pyscript as follows:
python -m visdom.server -env_path='./visdom_log/' -port=8097 # start visdom server
python train.py
-env_path is where the visdom logfile store in, and -port is the port for visdom. You could also change the -port in train.py.
If my work give you some insights and hints, star me please! Thank you~