Skip to content

[NeurIPS 24] Learning to Merge Tokens via Decoupled Embedding for Efficient Vision Transformers

Notifications You must be signed in to change notification settings

movinghoon/DTEM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning to Merge Tokens via Decoupled Embedding for Efficient Vision Transformers

This repository contains official code for
Learning to Merge Tokens via Decoupled Embedding for Efficient Vision Transformers
Dong Hoon Lee and Seunghoon Hong NeurIPS 2024 scheme

Requirements

  • torch==2.0.1
  • timm==0.9.7
  • tqdm, wandb, einops We also include environment.yaml for conda environment.

Basic usage

Modular training with DeiT-small on ImageNet-1k:

torchrun --nproc_per_node 8 train.py \
    --arch deit-small \
    --data-dir $DATA_DIR \
    --name $NAME \
    --entity $ENTITY \ 
    --project $PROJECT 

Citation

If you find our work useful, please consider citing it:

@inproceedings{
    lee2024dtem,
    title={Learning to Merge Tokens via Decoupled Embedding for Efficient Vision Transformers},
    author={Dong Hoon Lee and Seunghoon Hong},
    booktitle={Conference on Neural Information Processing Systems},
    year={2024},
}

About

[NeurIPS 24] Learning to Merge Tokens via Decoupled Embedding for Efficient Vision Transformers

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages