Skip to content

Accessor method implementations for layers in ANN module #2258

@iamshnoo

Description

@iamshnoo

Issue description

  • Hi! I have been going through the .hpp files in src/mlpack/methods/ann/layer and found some discrepancies regarding accessor implementations (getter and setter methods for the private variables). Specifically, in quite a large number of files, some of these methods are missing and thus makes the files a bit incomplete. I am listing out the ones I found below (there might be a few that I missed).
  • Also, I am not exactly sure if all the stuff I am listing below need to have accessor implementations (for example, some variable might have been left private without an accessor on purpose.) So, I would really appreciate if someone provides some clue as to accessor methods I should go about implementing for which of the variables from the list below.
  • I intend to implement all those methods and submit a PR very soon with the changes.

List :

add_merge.hpp

  • OutputDataType gradient

add.hpp

  • size_t outSize

atrous_convolution.hpp

  • size_t batchSize
  • arma::cube weight

batch_norm.hpp

  • size_t size
  • double eps
  • bool loading
  • OutputDataType gamma
  • OutputDataType beta
  • OutputDataType mean
  • OutputDataType variance
  • OutputDataType normalize
  • OutputDataType inputMean

bilinear_interpolation.hpp

  • size_t inRowSize
  • size_t inColSize
  • size_t outRowSize
  • size_t outColSize
  • size_t depth
  • size_t batchSize

concat_performance.hpp

  • OutputLayerType outputLayer
  • size_t inSize

concat.hpp

  • size_t axis
  • bool useAxis
  • bool model
  • size_t channels

concatenate.hpp

  • size_t inRows

constant.hpp

  • size_t inSize
  • size_t outSize
  • OutputDataType constantOutput

convolution.hpp

  • size_t batchSize
  • arma::cube weight

dropconnect.hpp

  • double scale
  • OutputDataType mask
  • OutputDataType denoise

dropout.hpp

  • double scale
  • OutputDataType mask

elu.hpp

  • bool deterministic
  • arma::mat derivative

fast_lstm.hpp

  • size_t inSize
  • size_t outSize
  • size_t forwardStep
  • size_t backwardStep
  • size_t gradientStep
  • OutputDataType prevOutput
  • size_t batchSize
  • size_t batchStep
  • size_t gradientStepIdx
  • size_t rhoSize
  • size_t bpttSteps

flexible_relu.hpp

  • possible error on lines 134-136

glimpse.hpp

  • size_t inSize
  • size_t size
  • size_t depth
  • size_t scale
  • size_t inputDepth

gru.hpp

  • size_t inSize
  • size_t outSize
  • size_t batchSize
  • size_t forwardStep
  • size_t backwardStep
  • size_t gradientStep
  • arma::mat prevError

highway.hpp

  • size_t inSize
  • bool model
  • bool reset
  • OutputDataType transformWeight
  • OutputDataType transformBias
  • OutputDataType transformGate
  • OutputDataType transformGateActivation
  • OutputDataType transformGateError
  • size_t width
  • size_t height
  • OutputDataType networkOutput

join.hpp

  • size_t inSizeRows
  • size_t inSizeCols

layer_norm.hpp

  • size_t size
  • double eps
  • bool loading
  • OutputDataType gamma
  • OutputDataType beta
  • OutputDataType normalized
  • OutputDataType inputMean

lookup.hpp

  • size_t inSize
  • size_t outSize

lstm.hpp

  • size_t inSize
  • size_t outSize
  • size_t rho
  • size_t forwardStep
  • size_t backwardStep
  • size_t gradientStep
  • OutputDataType prevOutput
  • size_t batchSize
  • size_t gradientStepIdx
  • size_t rhoSize
  • size_t bpttSteps

max_pooling.hpp

  • bool reset
  • size_t offset
  • size_t batchSize
  • OutputDataType gradient

mean_pooling.hpp

  • bool reset
  • size_t offset
  • size_t batchSize
  • OutputDataType gradient

minibatch_discrimination.hpp

  • size_t batchSize
  • OutputDataType weight
  • arma::cube M
  • arma::cube distances

multiply_merge.hpp

  • bool model
  • bool run
  • bool ownsLayer

recurrent_attention.hpp

  • size_t outSize
  • size_t rho
  • size_t forwardStep
  • size_t backwardStep
  • bool deterministic
  • std::vectorarma::mat feedbackOutputParameter
  • std::vectorarma::mat moduleOutputParameter
  • arma::mat recurrentError
  • arma::mat actionError
  • arma::mat actionDelta
  • arma::mat rnnDelta
  • arma::mat initialInput
  • arma::mat attentionGradient

recurrent.hpp

  • size_t rho
  • size_t forwardStep
  • size_t backwardStep
  • size_t gradientStep
  • bool deterministic
  • bool ownsLayer
  • std::vectorarma::mat feedbackOutputParameter
  • arma::mat recurrentError

reinforce_normal.hpp

  • double stdev

reparametrization.hpp

  • bool stochastic
  • bool includeKl
  • double beta
  • OutputDataType gaussianSample
  • OutputDataType mean
  • OutputDataType preStdDev
  • OutputDataType stdDev

select.hpp

  • size_t index
  • size_t elements

sequential.hpp

  • bool model
  • bool reset

subview.hpp

  • size_t inSize
  • size_t beginRow
  • size_t endRow
  • size_t beginCol
  • size_t endCol

transposed_convolution.hpp

  • size_t aW
  • size_t aH

virtual_batch_norm.hpp

  • size_t size
  • double eps
  • bool loading
  • OutputDataType gamma
  • OutputDataType beta
  • OutputDataType referenceBatchMean
  • OutputDataType referenceBatchMeanSquared
  • double oldCoefficient
  • double newCoefficient
  • OutputDataType mean
  • OutputDataType variance
  • OutputDataType inputParameter
  • OutputDataType normalized
  • OutputDataType inputSubMean

vr_class_reward.hpp

  • std::vector<LayerTypes<> > network
  • double reward
  • bool sizeAverage
  • double scale

weight_norm.hpp

  • size_t biasWeightSize
  • size_t layerWeightSize
  • OutputDataType scalarParameter
  • OutputDataType vectorParameter
  • OutputDataType layerGradients
  • OutputDataType layerWeights

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions