-
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Closed
Description
Issue description
- Hi! I have been going through the
.hppfiles insrc/mlpack/methods/ann/layerand found some discrepancies regarding accessor implementations (getter and setter methods for the private variables). Specifically, in quite a large number of files, some of these methods are missing and thus makes the files a bit incomplete. I am listing out the ones I found below (there might be a few that I missed). - Also, I am not exactly sure if all the stuff I am listing below need to have accessor implementations (for example, some variable might have been left private without an accessor on purpose.) So, I would really appreciate if someone provides some clue as to accessor methods I should go about implementing for which of the variables from the list below.
- I intend to implement all those methods and submit a PR very soon with the changes.
List :
add_merge.hpp
- OutputDataType gradient
add.hpp
- size_t outSize
atrous_convolution.hpp
- size_t batchSize
- arma::cube weight
batch_norm.hpp
- size_t size
- double eps
- bool loading
- OutputDataType gamma
- OutputDataType beta
- OutputDataType mean
- OutputDataType variance
- OutputDataType normalize
- OutputDataType inputMean
bilinear_interpolation.hpp
- size_t inRowSize
- size_t inColSize
- size_t outRowSize
- size_t outColSize
- size_t depth
- size_t batchSize
concat_performance.hpp
- OutputLayerType outputLayer
- size_t inSize
concat.hpp
- size_t axis
- bool useAxis
- bool model
- size_t channels
concatenate.hpp
- size_t inRows
constant.hpp
- size_t inSize
- size_t outSize
- OutputDataType constantOutput
convolution.hpp
- size_t batchSize
- arma::cube weight
dropconnect.hpp
- double scale
- OutputDataType mask
- OutputDataType denoise
dropout.hpp
- double scale
- OutputDataType mask
elu.hpp
- bool deterministic
- arma::mat derivative
fast_lstm.hpp
- size_t inSize
- size_t outSize
- size_t forwardStep
- size_t backwardStep
- size_t gradientStep
- OutputDataType prevOutput
- size_t batchSize
- size_t batchStep
- size_t gradientStepIdx
- size_t rhoSize
- size_t bpttSteps
flexible_relu.hpp
- possible error on lines 134-136
glimpse.hpp
- size_t inSize
- size_t size
- size_t depth
- size_t scale
- size_t inputDepth
gru.hpp
- size_t inSize
- size_t outSize
- size_t batchSize
- size_t forwardStep
- size_t backwardStep
- size_t gradientStep
- arma::mat prevError
highway.hpp
- size_t inSize
- bool model
- bool reset
- OutputDataType transformWeight
- OutputDataType transformBias
- OutputDataType transformGate
- OutputDataType transformGateActivation
- OutputDataType transformGateError
- size_t width
- size_t height
- OutputDataType networkOutput
join.hpp
- size_t inSizeRows
- size_t inSizeCols
layer_norm.hpp
- size_t size
- double eps
- bool loading
- OutputDataType gamma
- OutputDataType beta
- OutputDataType normalized
- OutputDataType inputMean
lookup.hpp
- size_t inSize
- size_t outSize
lstm.hpp
- size_t inSize
- size_t outSize
- size_t rho
- size_t forwardStep
- size_t backwardStep
- size_t gradientStep
- OutputDataType prevOutput
- size_t batchSize
- size_t gradientStepIdx
- size_t rhoSize
- size_t bpttSteps
max_pooling.hpp
- bool reset
- size_t offset
- size_t batchSize
- OutputDataType gradient
mean_pooling.hpp
- bool reset
- size_t offset
- size_t batchSize
- OutputDataType gradient
minibatch_discrimination.hpp
- size_t batchSize
- OutputDataType weight
- arma::cube M
- arma::cube distances
multiply_merge.hpp
- bool model
- bool run
- bool ownsLayer
recurrent_attention.hpp
- size_t outSize
- size_t rho
- size_t forwardStep
- size_t backwardStep
- bool deterministic
- std::vectorarma::mat feedbackOutputParameter
- std::vectorarma::mat moduleOutputParameter
- arma::mat recurrentError
- arma::mat actionError
- arma::mat actionDelta
- arma::mat rnnDelta
- arma::mat initialInput
- arma::mat attentionGradient
recurrent.hpp
- size_t rho
- size_t forwardStep
- size_t backwardStep
- size_t gradientStep
- bool deterministic
- bool ownsLayer
- std::vectorarma::mat feedbackOutputParameter
- arma::mat recurrentError
reinforce_normal.hpp
- double stdev
reparametrization.hpp
- bool stochastic
- bool includeKl
- double beta
- OutputDataType gaussianSample
- OutputDataType mean
- OutputDataType preStdDev
- OutputDataType stdDev
select.hpp
- size_t index
- size_t elements
sequential.hpp
- bool model
- bool reset
subview.hpp
- size_t inSize
- size_t beginRow
- size_t endRow
- size_t beginCol
- size_t endCol
transposed_convolution.hpp
- size_t aW
- size_t aH
virtual_batch_norm.hpp
- size_t size
- double eps
- bool loading
- OutputDataType gamma
- OutputDataType beta
- OutputDataType referenceBatchMean
- OutputDataType referenceBatchMeanSquared
- double oldCoefficient
- double newCoefficient
- OutputDataType mean
- OutputDataType variance
- OutputDataType inputParameter
- OutputDataType normalized
- OutputDataType inputSubMean
vr_class_reward.hpp
- std::vector<LayerTypes<> > network
- double reward
- bool sizeAverage
- double scale
weight_norm.hpp
- size_t biasWeightSize
- size_t layerWeightSize
- OutputDataType scalarParameter
- OutputDataType vectorParameter
- OutputDataType layerGradients
- OutputDataType layerWeights
kartikdutt18