Note: You may use conda instead of mamba
git clone --recursive [email protected]:mjlbach/ssg
cd ssg
conda env create -f environment.yml
conda activate ssg
bash install.sh
source .env
dvc pullBefore running, you will want to specify the path to ig_assets and ig_dataset:
export GIBSON_ASSETS_PATH=/home/michael/Documents/ig_data/assets
export IGIBSON_DATASET_PATH=/home/michael/Documents/ig_data/ig_datasetThis can be done automatically via a .envrc file and direnv.
Uses hydra, select the experiment with +experiment=path
python scripts/train.py +experiment=search ++experiment_save_path=/svl/u/mjlbach/ray_results ++experiment_name=search_testNote: ++eval_frequency=0 and ++num_envs=1 will help when running locally
Requires git 1.8.2 or above:
git submodule update --recursive --remote
If you did not clone the repo with --recursive, you will need to run this first:
git submodule update --init --recursive
conda env update --file environment.yml --prune- Should use ~ 5 gb RAM per worker on full Rs_int scene
- Needs about 50 gb RAM for 8 workers + driver