Reference: DOI: 10.1016/j.cell.2019.05.050
Mu Y*, Bennett DV*, Rubinov M*, Narayan S, Yang CT, Tanimoto M, Mensh BD, Looger LL, Ahrens MB.
Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell 2019 178:27-43.
Contact: Mika Rubinov, mika.rubinov at vanderbilt.edu
Instructions here.
h5py,dask,scipy,scikit-image,scikit-learn,matplotlib,nibabel,requests,numpy,pandas,pydantic>=2.8.0,pynwb>=2.8.0,loguru==0.7.2- Advanced Normalization Tools (ANTs) for registration (can install via conda)
Use pip to install:
pip install git+https://github.com/mikarubi/voluseg.git-
Download an example dataset folder: Example Dataset
-
Import package and load default parameters.
-
Execute code sequentially to perform cell detection.
-
The final output is in the file
cells0_clean.hdf5in the output directory.
# set up
import os
import pprint
import voluseg
# check for updates
voluseg.update()
# Download sample data
voluseg._tools.download_sample_data("/path/to/input/")
# set and save parameters
filename_parameters = voluseg.step0_define_parameters(
dir_input='/path/to/input/downloaded_data/',
dir_output='/path/to/output/directory/',
registration='high',
diam_cell=5.0,
f_volume=2.0
)
# load and print parameters
parameters = voluseg.load_parameters(filename_parameters)
pprint.pprint(parameters)
print("process volumes.")
voluseg.step1_process_volumes(parameters)
print("align volumes.")
voluseg.step2_align_volumes(parameters)
print("mask volumes.")
voluseg.step3_mask_volumes(parameters)
print("detect cells.")
voluseg.step4_detect_cells(parameters)
print("clean cells.")
voluseg.step5_clean_cells(parameters)- Parameter dictionary.
parameters = voluseg.load_parameters('parameters.json')- Required as input to individual pipeline steps.
- Directory of average volume plane images.
- Brain mask superimposed on brain volume.
- Can be used to assess goodness of brain masks.
- Directory of affine transforms for individual volumes.
- Can be used to assess movement of individual volumes.
- Can be used to register volumes from a concurrent recording.
background: estimated background fluorescence.block_valids: indices of blocks used for segmentation.block_xyz0/1: min/max block xyz coordinates.n_blocks: total number of blocks.n_voxels_cells: approximate number of voxels in each cell.thr_intensity: brain-mask intensity threshold.thr_probability: brain-mask probability threshold.volume_mean/mask/peak: volume mean/mask/local peak intensity.
mean_baseline: baseline of detrended volume-mean timeseries.mean_timeseries: detrended volume-mean timeseries.mean_timeseries_raw: raw volume-mean timeseries.timepoints: indices of timepoints used for cell segmentation.
background: estimated background fluorescence.cell_baseline: computed cell baselines.cell_timeseries: detrended [+ optionally filtered] cell timeseries.cell_timeseries_raw: raw cell timeseries (direct output of segmentation).cell_weights: cell spatial footprints (spatial NMF components).cell_x/y/z: cell coordinates.n/t: number of cells/timepoints.volume_id: cell ids represented on a volume.volume_weight: cell spatial footprints represented on a volume.x/y/z: volume dimensions.