-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathinput.rs
314 lines (284 loc) · 9.4 KB
/
input.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
use parse_result::{ParseResult, State};
use parse_result;
bitflags!{
flags InputMode: u32 {
/// Default (empty) input state.
const DEFAULT = 0,
/// If set the current slice of input is the last one.
const END_OF_INPUT = 1,
}
}
/// **Primitive:** Trait limiting the use of `Clone` for `Input`.
///
/// # Primitive
///
/// Only used by fundamental parsers and combinators.
///
pub trait InputClone {
/// Creates a clone of the instance.
///
/// # Primitive
///
/// Only used by fundamental parsers and combinators.
#[inline(always)]
fn clone(&self) -> Self;
}
/// **Primitive:** Trait exposing the buffer of `Input`.
///
/// # Primitive
///
/// Only used by fundamental parsers and combinators.
///
pub trait InputBuffer<'a> {
/// The type of each element of the buffer.
type Item: 'a;
/// Reveals the internal buffer containig the remainder of the input.
///
/// # Primitive
///
/// Only used by fundamental parsers and combinators.
#[inline(always)]
fn buffer(&self) -> &'a [Self::Item];
/// Modifies the inner data without leaving the `Input` context.
///
/// # Primitive
///
/// Only used by fundamental parsers and combinators.
#[inline(always)]
fn replace(self, &'a [Self::Item]) -> Self;
/// Returns true if this is the last available slice of the input.
///
/// # Primitive
///
/// Only used by fundamental parsers and combinators.
#[inline(always)]
fn is_last_slice(&self) -> bool;
}
/// Linear type containing the parser state, this type is threaded though `bind` and is also the
/// initial type passed to a parser.
///
/// Coupled with the `ParseResult` type it forms the parser monad:
///
/// ```ignore
/// Fn*(Input<I>, ...) -> ParseResult<I, T, E>;
/// ```
///
/// where ``Fn*`` is the appropriate closure/function trait, `I` the input token type (usually
/// something like `u8`), `...` additional parameters to the parser, `T` the carried type and `E`
/// the potential error type.
#[must_use]
#[derive(Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Input<'a, I: 'a>(InputMode, &'a [I]);
/// **Primitive:** Creates a new input from the given state and buffer.
///
/// # Primitive
///
/// Only used by fundamental parsers and combinators.
pub fn new<I>(state: InputMode, buffer: &[I]) -> Input<I> {
Input(state, buffer)
}
impl<'a, I> Input<'a, I> {
/// Creates a new `Input` to start parsing with.
///
/// # Deprecated
///
/// Use `parse_only` or `buffer::SliceStream` to parse a slice instead. For any advanced usage
/// create an `Input` using `primitives::input::new`.
///
/// # Note
///
/// This should only be used for simple examples, for anything more advanced look at the
/// `buffer` module.
// TODO: Remove, use parse_slice instead
#[inline]
pub fn new(b: &'a [I]) -> Self {
Input(END_OF_INPUT, b)
}
/// Returns `t` as a success value in the parsing context.
///
/// Equivalent to Haskell's `return` function in the `Monad` typeclass.
///
/// # Example
///
/// ```
/// use chomp::parse_only;
///
/// let r = parse_only(|i|
/// // Annotate the error type
/// i.ret::<_, ()>("Wohoo, success!"),
/// b"some input");
///
/// assert_eq!(r, Ok("Wohoo, success!"));
/// ```
#[inline]
pub fn ret<T, E = ()>(self, t: T) -> ParseResult<'a, I, T, E> {
parse_result::new(State::Data(self, t))
}
/// Returns `e` as an error value in the parsing context.
///
/// A more general version of Haskell's `fail` function in the `Monad` typeclass.
///
/// # Example
///
/// ```
/// use chomp::{ParseError, parse_only};
///
/// let r = parse_only(|i|
/// // Annotate the value type
/// i.err::<(), _>("Something went wrong"),
/// b"some input");
///
/// assert_eq!(r, Err(ParseError::Error(b"some input", "Something went wrong")));
/// ```
#[inline]
pub fn err<T, E>(self, e: E) -> ParseResult<'a, I, T, E> {
parse_result::new(State::Error(self.1, e))
}
/// Notifies that a parser has reached the end of the currently supplied slice but requires
/// more data.
///
/// # Primitive
///
/// Only used by fundamental parsers and combinators.
#[inline]
pub fn incomplete<T, E>(self, n: usize) -> ParseResult<'a, I, T, E> {
parse_result::new(State::Incomplete(n))
}
/// Converts a `Result` into a `ParseResult`, preserving parser state.
///
/// To convert an `Option` into a `ParseResult` it is recommended to use
/// [`Option::ok_or`](https://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or)
/// or [`Option::ok_or_else`](https://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or_else)
/// in combination with this method.
///
/// # Examples
///
/// ```
/// use chomp::{ParseError, parse_only};
///
/// let r = parse_only(|i| i.from_result::<_, ()>(Ok("foo")), b"test");
///
/// assert_eq!(r, Ok("foo"));
///
/// let r = parse_only(|i| i.from_result::<(), _>(Err("error message")), b"test");
///
/// assert_eq!(r, Err(ParseError::Error(&b"test"[..], "error message")));
/// ```
#[inline]
pub fn from_result<T, E>(self, r: Result<T, E>) -> ParseResult<'a, I, T, E> {
match r {
Ok(t) => parse_result::new(State::Data(self, t)),
Err(e) => parse_result::new(State::Error(self.1, e)),
}
}
}
/// Trait limiting the use of `Clone` for `Input`.
///
/// # Primitive
///
/// Only used by fundamental parsers and combinators.
///
/// # Motivation
///
/// The `Input` type is supposed to be an approximation of a linear type when observed in the
/// monadic parser context. This means that it should not be possible to duplicate or accidentally
/// throw it away as well as restrict when and where an `Input` can be constructed. Not
/// implementing `Clone` or `Copy` solves the first issue.
///
/// However, cloning an `Input` is necessary for backtracking and also allows for slightly more
/// efficient iteration in combinators. This trait allows us to enable cloning selectively.
impl<'a, I: 'a> InputClone for Input<'a, I> {
#[inline(always)]
fn clone(&self) -> Self {
Input(self.0, self.1)
}
}
/// Trait exposing the buffer of `Input`.
///
/// # Primitive
///
/// Only used by fundamental parsers and combinators.
///
/// # Motivation
///
/// The `Input` type is supposed to be an approximation of a linear type when observed in the
/// monadic parser context. This means that it should not be possible to duplicate or accidentally
/// throw it away as well as restrict when and where an `Input` can be constructed. Not exposing
/// the constructor (to allow destructuring) as well as using `#[must_use]` solves the second
/// issue.
///
/// But to be able to parse data the contents of the `Input` type must be exposed in at least one
/// point, so that data can be examined, and this trait that makes it possible.
///
/// # Example
///
/// ```
/// use chomp::take;
/// use chomp::primitives::input;
/// use chomp::primitives::{InputBuffer, IntoInner, State};
///
/// let i = input::new(input::END_OF_INPUT, b"Testing");
///
/// assert_eq!(i.buffer(), b"Testing");
/// assert_eq!(i.is_last_slice(), true);
///
/// let b = i.buffer();
/// let j = i.replace(&b[..4]);
///
/// let r = take(j, 4);
///
/// assert_eq!(r.into_inner(), State::Data(input::new(input::END_OF_INPUT, b""), &b"Test"[..]));
/// ```
impl<'a, I: 'a> InputBuffer<'a> for Input<'a, I> {
type Item = I;
#[inline(always)]
fn buffer(&self) -> &'a [Self::Item] {
self.1
}
#[inline(always)]
fn replace(self, b: &'a [Self::Item]) -> Self {
Input(self.0, b)
}
#[inline(always)]
fn is_last_slice(&self) -> bool {
self.0.contains(END_OF_INPUT)
}
}
#[cfg(test)]
mod test {
use super::{new, Input, InputBuffer, DEFAULT, END_OF_INPUT};
use parse_result::ParseResult;
use primitives::{IntoInner, State};
#[test]
fn make_ret() {
let i1: Input<u8> = new(END_OF_INPUT, b"in1");
let i2: Input<u8> = new(DEFAULT, b"in2");
let r1: ParseResult<u8, u32, ()> = i1.ret::<_, ()>(23u32);
let r2: ParseResult<u8, i32, ()> = i2.ret::<_, ()>(23i32);
assert_eq!(r1.into_inner(), State::Data(Input(END_OF_INPUT, b"in1"), 23u32));
assert_eq!(r2.into_inner(), State::Data(Input(DEFAULT, b"in2"), 23i32));
}
#[test]
fn make_err() {
let i1: Input<u8> = new(END_OF_INPUT, b"in1");
let i2: Input<u8> = new(DEFAULT, b"in2");
let r1: ParseResult<u8, (), u32> = i1.err::<(), _>(23u32);
let r2: ParseResult<u8, (), i32> = i2.err::<(), _>(23i32);
assert_eq!(r1.into_inner(), State::Error(b"in1", 23u32));
assert_eq!(r2.into_inner(), State::Error(b"in2", 23i32));
}
#[test]
fn make_incomplete() {
let i1: Input<u8> = new(END_OF_INPUT, b"in1");
let i2: Input<u8> = new(DEFAULT, b"in2");
let r1: ParseResult<u8, (), u32> = i1.incomplete::<(), _>(23);
let r2: ParseResult<u8, (), i32> = i2.incomplete::<(), _>(23);
assert_eq!(r1.into_inner(), State::Incomplete(23));
assert_eq!(r2.into_inner(), State::Incomplete(23));
}
#[test]
fn last_slice() {
let i = new(END_OF_INPUT, &b"foo"[..]);
assert_eq!(i.is_last_slice(), true);
}
}