This repo contains the implementation of SIGGRAPH 2025 paper: Neural BRDF Importance Sampling by Reparameterization.
- CUDA 11.7
- pytorch 2.3.1
- lightning 2.1.3
- mitsuba 3.4.0
The pre-trained weights for both RGL and NeuSample dataset can be found in here
- Edit
configs/rgl.yamlorconfigs/neusample.yamlto setup data path and configure a training. - To train the reparameterization model, run:
python train.py --experiment_name <experiment-name> --configs <config-file> --device <gpu-id> --max_epochs <number-of-epochs>- To train the pdf approximation, run:
python train_mis.py --experiment_name <experiment-name> --configs <config-file> --device <gpu-id> --max_epochs <number-of-epochs>demo/demo.ipynbcontains a rendering example using mitsuba 3.
@inproceedings{wu2025neural,
title={Neural BRDF Importance Sampling by Reparameterization},
booktitle = {SIGGRAPH},
author={Liwen Wu and Sai Bi and Zexiang Xu and Hao Tan and Kai Zhang and Fujun Luan and Haolin Lu and Ravi Ramamoorthi},
year={2025}
}