Skip to content

lwwu2/reparam25

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neural BRDF Importance Sampling by Reparameterization

This repo contains the implementation of SIGGRAPH 2025 paper: Neural BRDF Importance Sampling by Reparameterization.

Setup

  • CUDA 11.7
  • pytorch 2.3.1
  • lightning 2.1.3
  • mitsuba 3.4.0

Pre-trained models

The pre-trained weights for both RGL and NeuSample dataset can be found in here

Usage

  1. Edit configs/rgl.yaml or configs/neusample.yaml to setup data path and configure a training.
  2. To train the reparameterization model, run:
python train.py --experiment_name <experiment-name> --configs <config-file> --device <gpu-id> --max_epochs <number-of-epochs>
  1. To train the pdf approximation, run:
python train_mis.py --experiment_name <experiment-name> --configs <config-file> --device <gpu-id> --max_epochs <number-of-epochs>
  1. demo/demo.ipynb contains a rendering example using mitsuba 3.

Citation

@inproceedings{wu2025neural,
      title={Neural BRDF Importance Sampling by Reparameterization},
      booktitle = {SIGGRAPH},
      author={Liwen Wu and Sai Bi and Zexiang Xu and Hao Tan and Kai Zhang and Fujun Luan and Haolin Lu and Ravi Ramamoorthi},
      year={2025}
}

About

Neural BRDF Importance Sampling by Reparameterization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published