Skip to content

linjohnss/FrugalNeRF

Repository files navigation

FrugalNeRF

This repository contains a pytorch implementation for the paper: FrugalNeRF: Fast Convergence for Extreme Few-shot Novel View Synthesis without Learned Priors. Our work presents a simple baseline to reconstruct radiance fields in few-shot setting, which achieves fast training process without learned proirs.

teaser

Installation

Tested on Ubuntu 24.04 + Pytorch 2.4.1

Install environment:

conda create -n frugalnerf python=3.8
conda activate frugalnerf
pip install torch torchvision
pip install tqdm scikit-image opencv-python configargparse lpips imageio-ffmpeg kornia lpips tensorboard torchmetrics plyfile pandas timm
pip install torch-efficient-distloss

Dataset

Please follow the instructions in ViP-NeRF to set up various databases.

Quick Start

The training script is in train.py, to train a FrugalNeRF:

For single scene training:

python train.py --config configs/llff_default_2v.txt --datadir ./data/nerf_llff_data/horns --train_frame_num 20 42 --test_frame_num 0 8 16 24 32 40 48 56

For training on entire dataset:

bash scripts/run_llff_2v.sh

Rendering

python train.py --config configs/llff_default_2v.txt --ckpt path/to/your/checkpoint --render_only 1 --render_test 1 

You can just simply pass --render_only 1 and --ckpt path/to/your/checkpoint to render images from a pre-trained checkpoint. You may also need to specify what you want to render, like --render_test 1, --render_train 1 or --render_path 1. The rendering results are located in your checkpoint folder.

Citation

If you find our code or paper helps, please consider citing:

@inproceedings{lin2024frugalnerf,
  title={FrugalNeRF: Fast Convergence for Few-shot Novel View Synthesis without Learned Priors},
  author={Chin-Yang Lin and Chung-Ho Wu and Chang-Han Yeh and Shih-Han Yen and Cheng Sun and Yu-Lun Liu},
  booktitle={CVPR},
  year={2025}
}

Acknowledgements

The code is available under the MIT license and draws from TensoRF, ViP-NeRF, which are also licensed under the MIT license. Licenses for these projects can be found in the licenses/ folder.

About

[CVPR 2025] FrugalNeRF: Fast Convergence for Extreme Few-shot Novel View Synthesis without Learned Priors

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages