This repository is the official PyTorch implementation.
1. python 3.8
2. pip install -r requirements.txt
- rename directory pre-trained to checkpoints
- rename directory pre-datasets to datasets
- run command to infer(test)
python test.py --dataroot ./datasets/unsuped --name unsuped --model unsupedmix --epoch PSPL_HRNet
- rename directory pre-trained to checkpoints
- rename directory pre-datasets to datasets
- run command to infer(test)
python test.py --dataroot ./datasets/unsuped --name unsuped --model UWCNN --epoch PSPL_UWCNN - testing NU2Net and SemiUIR (baidu cloud disk, 提取码: gkf2) can follow the way (need add corresponding files) as UWCNN. Or you can put downloaded pre-trained model files to their's original source code projects(NU2Net, Semi-UIR) to inference.
Y. Liu, Q. Jiang, X. Li, T. Luo and W. Ren, "Toward Better Than Pseudo-Reference in Underwater Image Enhancement,"
in IEEE Transactions on Image Processing, vol. 34, pp. 6168-6179, 2025.
-
https://github.com/lewis081/CCL-Net
-
https://github.com/justwj/CLUIE-Net
-
https://github.com/uf-robopi/UDepth