This repository is the official PyTorch implementation of CCL-Net.
You should prepare the structure of datasets folder as follows:
├──path_to_data
├── train
├── raw
├── im1.png
├── im2.png
└── ...
├── ref
├── im1.png
├── im2.png
└── ...
├── test
├── raw
├── im1.png
├── im2.png
└── ...
1. python 3.8
2. pip install -r requirements.txt
3. pip install torch==2.0.0 torchvision==0.15.1 --index-url https://download.pytorch.org/whl/cu118
1. rename directory pre-trained to checkpoints
2. run command 'python test.py --dataroot ./imgs --model HRNet'
python train.py --dataroot /the_abs_path_of_data --model CCNet --lr 0.0005
python test.py --dataroot /the_abs_path_of_data --model CCNet
Training or Testing the HR-Net need load the pre-trained CC-Net. Therefore, you should have trained the CC-Net before you start to train or test the HR-Net.
python train.py --dataroot /the_abs_path_of_data --model HRNet --lr 0.001
python test.py --dataroot /the_abs_path_of_data --model HRNet
@article{liu2024underwater,
title={Underwater image enhancement with cascaded contrastive learning},
author={Liu, Yi and Jiang, Qiuping and Wang, Xinyi and Luo, Ting and Zhou, Jingchun},
journal={IEEE Transactions on Multimedia},
year={2024},
publisher={IEEE}
}
- https://github.com/trentqq/SGUIE-Net_Simple
- https://github.com/Li-Chongyi/Ucolor
- https://github.com/GlassyWu/AECR-Net
- https://github.com/zhilin007/FFA-Net
- https://github.com/swz30/MIRNetv2