@@ -73,22 +73,32 @@ eval instant at 50m histogram_count(testhistogram3)
73
73
{start="positive"} 110
74
74
{start="negative"} 20
75
75
76
+ # Classic way of accessing the count still works.
77
+ eval instant at 50m testhistogram3_count
78
+ testhistogram3_count{start="positive"} 110
79
+ testhistogram3_count{start="negative"} 20
80
+
76
81
# Test histogram_sum.
77
82
eval instant at 50m histogram_sum(testhistogram3)
78
83
{start="positive"} 330
79
84
{start="negative"} 80
80
85
81
- # Test histogram_avg.
86
+ # Classic way of accessing the sum still works.
87
+ eval instant at 50m testhistogram3_sum
88
+ testhistogram3_sum{start="positive"} 330
89
+ testhistogram3_sum{start="negative"} 80
90
+
91
+ # Test histogram_avg. This has no classic equivalent.
82
92
eval instant at 50m histogram_avg(testhistogram3)
83
93
{start="positive"} 3
84
94
{start="negative"} 4
85
95
86
- # Test histogram_stddev.
96
+ # Test histogram_stddev. This has no classic equivalent.
87
97
eval instant at 50m histogram_stddev(testhistogram3)
88
98
{start="positive"} 2.8189265757336734
89
99
{start="negative"} 4.182715937754936
90
100
91
- # Test histogram_stdvar.
101
+ # Test histogram_stdvar. This has no classic equivalent.
92
102
eval instant at 50m histogram_stdvar(testhistogram3)
93
103
{start="positive"} 7.946347039377573
94
104
{start="negative"} 17.495112615949154
@@ -103,156 +113,315 @@ eval instant at 50m histogram_fraction(0, 0.2, rate(testhistogram3[5m]))
103
113
{start="positive"} 0.6363636363636364
104
114
{start="negative"} 0
105
115
106
- # Test histogram_quantile.
116
+ # In the classic histogram, we can access the corresponding bucket (if
117
+ # it exists) and divide by the count to get the same result.
118
+
119
+ eval instant at 50m testhistogram3_bucket{le=".2"} / ignoring(le) testhistogram3_count
120
+ {start="positive"} 0.6363636363636364
121
+
122
+ eval instant at 50m rate(testhistogram3_bucket{le=".2"}[5m]) / ignoring(le) rate(testhistogram3_count[5m])
123
+ {start="positive"} 0.6363636363636364
124
+
125
+ # Test histogram_quantile, native and classic.
126
+
127
+ eval instant at 50m histogram_quantile(0, testhistogram3)
128
+ {start="positive"} 0
129
+ {start="negative"} -0.25
107
130
108
131
eval instant at 50m histogram_quantile(0, testhistogram3_bucket)
109
132
{start="positive"} 0
110
133
{start="negative"} -0.25
111
134
135
+ eval instant at 50m histogram_quantile(0.25, testhistogram3)
136
+ {start="positive"} 0.055
137
+ {start="negative"} -0.225
138
+
112
139
eval instant at 50m histogram_quantile(0.25, testhistogram3_bucket)
113
140
{start="positive"} 0.055
114
141
{start="negative"} -0.225
115
142
143
+ eval instant at 50m histogram_quantile(0.5, testhistogram3)
144
+ {start="positive"} 0.125
145
+ {start="negative"} -0.2
146
+
116
147
eval instant at 50m histogram_quantile(0.5, testhistogram3_bucket)
117
148
{start="positive"} 0.125
118
149
{start="negative"} -0.2
119
150
151
+ eval instant at 50m histogram_quantile(0.75, testhistogram3)
152
+ {start="positive"} 0.45
153
+ {start="negative"} -0.15
154
+
120
155
eval instant at 50m histogram_quantile(0.75, testhistogram3_bucket)
121
156
{start="positive"} 0.45
122
157
{start="negative"} -0.15
123
158
159
+ eval instant at 50m histogram_quantile(1, testhistogram3)
160
+ {start="positive"} 1
161
+ {start="negative"} -0.1
162
+
124
163
eval instant at 50m histogram_quantile(1, testhistogram3_bucket)
125
164
{start="positive"} 1
126
165
{start="negative"} -0.1
127
166
128
167
# Quantile too low.
168
+
169
+ eval_warn instant at 50m histogram_quantile(-0.1, testhistogram)
170
+ {start="positive"} -Inf
171
+ {start="negative"} -Inf
172
+
129
173
eval_warn instant at 50m histogram_quantile(-0.1, testhistogram_bucket)
130
174
{start="positive"} -Inf
131
175
{start="negative"} -Inf
132
176
133
177
# Quantile too high.
178
+
179
+ eval_warn instant at 50m histogram_quantile(1.01, testhistogram)
180
+ {start="positive"} +Inf
181
+ {start="negative"} +Inf
182
+
134
183
eval_warn instant at 50m histogram_quantile(1.01, testhistogram_bucket)
135
184
{start="positive"} +Inf
136
185
{start="negative"} +Inf
137
186
138
187
# Quantile invalid.
188
+
189
+ eval_warn instant at 50m histogram_quantile(NaN, testhistogram)
190
+ {start="positive"} NaN
191
+ {start="negative"} NaN
192
+
139
193
eval_warn instant at 50m histogram_quantile(NaN, testhistogram_bucket)
140
194
{start="positive"} NaN
141
195
{start="negative"} NaN
142
196
143
197
# Quantile value in lowest bucket.
198
+
199
+ eval instant at 50m histogram_quantile(0, testhistogram)
200
+ {start="positive"} 0
201
+ {start="negative"} -0.2
202
+
144
203
eval instant at 50m histogram_quantile(0, testhistogram_bucket)
145
204
{start="positive"} 0
146
205
{start="negative"} -0.2
147
206
148
207
# Quantile value in highest bucket.
208
+
209
+ eval instant at 50m histogram_quantile(1, testhistogram)
210
+ {start="positive"} 1
211
+ {start="negative"} 0.3
212
+
149
213
eval instant at 50m histogram_quantile(1, testhistogram_bucket)
150
214
{start="positive"} 1
151
215
{start="negative"} 0.3
152
216
153
217
# Finally some useful quantiles.
218
+
219
+ eval instant at 50m histogram_quantile(0.2, testhistogram)
220
+ {start="positive"} 0.048
221
+ {start="negative"} -0.2
222
+
154
223
eval instant at 50m histogram_quantile(0.2, testhistogram_bucket)
155
224
{start="positive"} 0.048
156
225
{start="negative"} -0.2
157
226
227
+ eval instant at 50m histogram_quantile(0.5, testhistogram)
228
+ {start="positive"} 0.15
229
+ {start="negative"} -0.15
230
+
158
231
eval instant at 50m histogram_quantile(0.5, testhistogram_bucket)
159
232
{start="positive"} 0.15
160
233
{start="negative"} -0.15
161
234
235
+ eval instant at 50m histogram_quantile(0.8, testhistogram)
236
+ {start="positive"} 0.72
237
+ {start="negative"} 0.3
238
+
162
239
eval instant at 50m histogram_quantile(0.8, testhistogram_bucket)
163
240
{start="positive"} 0.72
164
241
{start="negative"} 0.3
165
242
166
243
# More realistic with rates.
244
+
245
+ eval instant at 50m histogram_quantile(0.2, rate(testhistogram[5m]))
246
+ {start="positive"} 0.048
247
+ {start="negative"} -0.2
248
+
167
249
eval instant at 50m histogram_quantile(0.2, rate(testhistogram_bucket[5m]))
168
250
{start="positive"} 0.048
169
251
{start="negative"} -0.2
170
252
253
+ eval instant at 50m histogram_quantile(0.5, rate(testhistogram[5m]))
254
+ {start="positive"} 0.15
255
+ {start="negative"} -0.15
256
+
171
257
eval instant at 50m histogram_quantile(0.5, rate(testhistogram_bucket[5m]))
172
258
{start="positive"} 0.15
173
259
{start="negative"} -0.15
174
260
261
+ eval instant at 50m histogram_quantile(0.8, rate(testhistogram[5m]))
262
+ {start="positive"} 0.72
263
+ {start="negative"} 0.3
264
+
175
265
eval instant at 50m histogram_quantile(0.8, rate(testhistogram_bucket[5m]))
176
266
{start="positive"} 0.72
177
267
{start="negative"} 0.3
178
268
179
269
# Want results exactly in the middle of the bucket.
270
+
271
+ eval instant at 7m histogram_quantile(1./6., testhistogram2)
272
+ {} 1
273
+
180
274
eval instant at 7m histogram_quantile(1./6., testhistogram2_bucket)
181
275
{} 1
182
276
277
+ eval instant at 7m histogram_quantile(0.5, testhistogram2)
278
+ {} 3
279
+
183
280
eval instant at 7m histogram_quantile(0.5, testhistogram2_bucket)
184
281
{} 3
185
282
283
+ eval instant at 7m histogram_quantile(5./6., testhistogram2)
284
+ {} 5
285
+
186
286
eval instant at 7m histogram_quantile(5./6., testhistogram2_bucket)
187
287
{} 5
188
288
289
+ eval instant at 47m histogram_quantile(1./6., rate(testhistogram2[15m]))
290
+ {} 1
291
+
189
292
eval instant at 47m histogram_quantile(1./6., rate(testhistogram2_bucket[15m]))
190
293
{} 1
191
294
295
+ eval instant at 47m histogram_quantile(0.5, rate(testhistogram2[15m]))
296
+ {} 3
297
+
192
298
eval instant at 47m histogram_quantile(0.5, rate(testhistogram2_bucket[15m]))
193
299
{} 3
194
300
301
+ eval instant at 47m histogram_quantile(5./6., rate(testhistogram2[15m]))
302
+ {} 5
303
+
195
304
eval instant at 47m histogram_quantile(5./6., rate(testhistogram2_bucket[15m]))
196
305
{} 5
197
306
198
- # Aggregated histogram: Everything in one.
307
+ # Aggregated histogram: Everything in one. Note how native histograms
308
+ # don't require aggregation by le.
309
+
310
+ eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds[5m])))
311
+ {} 0.075
312
+
199
313
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le))
200
314
{} 0.075
201
315
316
+ eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds[5m])))
317
+ {} 0.1277777777777778
318
+
202
319
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le))
203
320
{} 0.1277777777777778
204
321
205
322
# Aggregated histogram: Everything in one. Now with avg, which does not change anything.
323
+
324
+ eval instant at 50m histogram_quantile(0.3, avg(rate(request_duration_seconds[5m])))
325
+ {} 0.075
326
+
206
327
eval instant at 50m histogram_quantile(0.3, avg(rate(request_duration_seconds_bucket[5m])) by (le))
207
328
{} 0.075
208
329
330
+ eval instant at 50m histogram_quantile(0.5, avg(rate(request_duration_seconds[5m])))
331
+ {} 0.12777777777777778
332
+
209
333
eval instant at 50m histogram_quantile(0.5, avg(rate(request_duration_seconds_bucket[5m])) by (le))
210
334
{} 0.12777777777777778
211
335
212
336
# Aggregated histogram: By instance.
337
+
338
+ eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds[5m])) by (instance))
339
+ {instance="ins1"} 0.075
340
+ {instance="ins2"} 0.075
341
+
213
342
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, instance))
214
343
{instance="ins1"} 0.075
215
344
{instance="ins2"} 0.075
216
345
346
+ eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds[5m])) by (instance))
347
+ {instance="ins1"} 0.1333333333
348
+ {instance="ins2"} 0.125
349
+
217
350
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, instance))
218
351
{instance="ins1"} 0.1333333333
219
352
{instance="ins2"} 0.125
220
353
221
354
# Aggregated histogram: By job.
355
+
356
+ eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds[5m])) by (job))
357
+ {job="job1"} 0.1
358
+ {job="job2"} 0.0642857142857143
359
+
222
360
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, job))
223
361
{job="job1"} 0.1
224
362
{job="job2"} 0.0642857142857143
225
363
364
+ eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds[5m])) by (job))
365
+ {job="job1"} 0.14
366
+ {job="job2"} 0.1125
367
+
226
368
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, job))
227
369
{job="job1"} 0.14
228
370
{job="job2"} 0.1125
229
371
230
372
# Aggregated histogram: By job and instance.
373
+
374
+ eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds[5m])) by (job, instance))
375
+ {instance="ins1", job="job1"} 0.11
376
+ {instance="ins2", job="job1"} 0.09
377
+ {instance="ins1", job="job2"} 0.06
378
+ {instance="ins2", job="job2"} 0.0675
379
+
231
380
eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, job, instance))
232
381
{instance="ins1", job="job1"} 0.11
233
382
{instance="ins2", job="job1"} 0.09
234
383
{instance="ins1", job="job2"} 0.06
235
384
{instance="ins2", job="job2"} 0.0675
236
385
386
+ eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds[5m])) by (job, instance))
387
+ {instance="ins1", job="job1"} 0.15
388
+ {instance="ins2", job="job1"} 0.1333333333333333
389
+ {instance="ins1", job="job2"} 0.1
390
+ {instance="ins2", job="job2"} 0.1166666666666667
391
+
237
392
eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, job, instance))
238
393
{instance="ins1", job="job1"} 0.15
239
394
{instance="ins2", job="job1"} 0.1333333333333333
240
395
{instance="ins1", job="job2"} 0.1
241
396
{instance="ins2", job="job2"} 0.1166666666666667
242
397
243
398
# The unaggregated histogram for comparison. Same result as the previous one.
399
+
400
+ eval instant at 50m histogram_quantile(0.3, rate(request_duration_seconds[5m]))
401
+ {instance="ins1", job="job1"} 0.11
402
+ {instance="ins2", job="job1"} 0.09
403
+ {instance="ins1", job="job2"} 0.06
404
+ {instance="ins2", job="job2"} 0.0675
405
+
244
406
eval instant at 50m histogram_quantile(0.3, rate(request_duration_seconds_bucket[5m]))
245
407
{instance="ins1", job="job1"} 0.11
246
408
{instance="ins2", job="job1"} 0.09
247
409
{instance="ins1", job="job2"} 0.06
248
410
{instance="ins2", job="job2"} 0.0675
249
411
412
+ eval instant at 50m histogram_quantile(0.5, rate(request_duration_seconds[5m]))
413
+ {instance="ins1", job="job1"} 0.15
414
+ {instance="ins2", job="job1"} 0.13333333333333333
415
+ {instance="ins1", job="job2"} 0.1
416
+ {instance="ins2", job="job2"} 0.11666666666666667
417
+
250
418
eval instant at 50m histogram_quantile(0.5, rate(request_duration_seconds_bucket[5m]))
251
419
{instance="ins1", job="job1"} 0.15
252
420
{instance="ins2", job="job1"} 0.13333333333333333
253
421
{instance="ins1", job="job2"} 0.1
254
422
{instance="ins2", job="job2"} 0.11666666666666667
255
423
424
+ # All NHCBs summed into one.
256
425
eval instant at 50m sum(request_duration_seconds)
257
426
{} {{schema:-53 count:250 custom_values:[0.1 0.2] buckets:[100 90 60]}}
258
427
@@ -303,11 +472,13 @@ load_with_nhcb 5m
303
472
eval instant at 50m histogram_quantile(0.2, rate(empty_bucket[5m]))
304
473
{instance="ins1", job="job1"} NaN
305
474
306
- # Load a duplicate histogram with a different name to test failure scenario on multiple histograms with the same label set
475
+ # Load a duplicate histogram with a different name to test failure scenario on multiple histograms with the same label set.
307
476
# https://github.com/prometheus/prometheus/issues/9910
308
477
load_with_nhcb 5m
309
- request_duration_seconds2_bucket{job="job1", instance="ins1", le="0.1"} 0+1x10
310
- request_duration_seconds2_bucket{job="job1", instance="ins1", le="0.2"} 0+3x10
311
- request_duration_seconds2_bucket{job="job1", instance="ins1", le="+Inf"} 0+4x10
478
+ request_duration_seconds2_bucket{job="job1", instance="ins1", le="0.1"} 0+1x10
479
+ request_duration_seconds2_bucket{job="job1", instance="ins1", le="0.2"} 0+3x10
480
+ request_duration_seconds2_bucket{job="job1", instance="ins1", le="+Inf"} 0+4x10
481
+
482
+ eval_fail instant at 50m histogram_quantile(0.99, {__name__=~"request_duration_seconds\\d*_bucket"})
312
483
313
- eval_fail instant at 50m histogram_quantile(0.99, {__name__=~"request_duration_seconds\\d*_bucket$ "})
484
+ eval_fail instant at 50m histogram_quantile(0.99, {__name__=~"request_duration_seconds\\d*"})
0 commit comments