ELLA: Modeling the Subcellular Spatial Variation of Gene Expression within Cells in High-Resolution Spatial Transcriptomics
Check out the tutorial pages for demos and documentations to get started with ELLA.
Prerequisites
git clone https://github.com/jadexq/ELLA.git
conda create -n ella python=3.9
conda activate ella
poetry install- Simulate data
It will generate a
python -m ella.data.simulate_data
simulated_data.jsonin the current directory - Prepare data from pickle
python -m ella.data.prepare_data -i your_dir/data.pkl -o prepared_data
- Visualize data
ella-visualize -d . -c '2102_686' -g 'Alb'
- Train a model with a recipe, e.g.
configs/mini_demo.yamlIt will save all outputs inella-train --config-name mini_demo
${log.save_dir}(stopping rules is current hard coded!) - Open tensorboard for checking convergence
tensorboard --logdir lightning_logs/debug/gene_0-kernel_-1
- Estimate
ella-estimate -d lightning_logs/debug -p "gene_0-kernel_.*" -b 10 -o path/to/out.json
./ELLA/
├── poetry.lock % poetry dependency lock file
├── pyproject.toml % project metadata and dependencies
├── ella % ELLA source code
│ ├── cli
│ ├── data
│ ├── models
│ ├── utils
│ ├── options.py
│ └── __init__.py
├── docs % source code of the tutorial website
│ └── ...
├── scripts
│ └── demo % code and data for the minimum and complete demos
│ ├── mini_demo
│ └── complete_demo
└── README.md
Complete Demo
- complete_demo_data.pkl
Seq-Scope
- data_health_PC
- data_health_PP
- data_TD_PC
- data_TD_PP
Stereo-seq
- data_Myoblasts.pkl
- data_Cardiomyocytes.pkl
SeqFISH+
- data_Fibroblast.pkl
Merfish mouse brain
- data_EX.pkl
- data_IN.pkl
- data_Astr.pkl
- data_Oligo.pkl