A plugin that provides vector similarity search capabilities using Qdrant vector database.
This plugin provides three main functionalities:
- Create collections with configurable vector dimensions
- Store documents with their vector embeddings in Qdrant
- Search for similar documents using vector embeddings
The plugin requires the following configuration:
{
"plugins": [
{
"name": "qdrant",
"path": "oci://ghcr.io/hyper-mcp-rs/qdrant-plugin:latest",
"runtime_config": {
"QDRANT_URL": "http://localhost:6334",
"allowed_hosts": [
"localhost:6333"
],
"env_vars": {
"QDRANT_URL": "http://localhost:6333"
}
}
}
]
}Creates a new collection in Qdrant with specified vector dimensions.
{
"collection_name": "my_documents",
"vector_size": 384 // Optional, defaults to 384
}Stores a document with its vector embedding in Qdrant.
{
"collection_name": "my_documents",
"text": "Your document text",
"vector": [0.1, 0.2, ...] // Vector dimensions must match collection's vector_size
}Finds similar documents using vector similarity search.
{
"collection_name": "my_documents",
"vector": [0.1, 0.2, ...], // Vector dimensions must match collection's vector_size
"limit": 5 // Optional, defaults to 5
}- Configurable vector dimensions per collection
- Support for vector-based queries
- Configurable similarity search results limit
- Uses cosine similarity for vector matching
- Thread-safe operations
- Qdrant for vector storage and similarity search
- UUID for document identification