Skip to content

guanqiyuan/CST-Net

Repository files navigation

Rethinking Nighttime Image Deraining via Learnable Color Space Transformation (NeurIPS 2025)

Qiyuan Guan* 1, Xiang Chen* 2, Guiyue Jin 1, Jiyu Jin 1, Shumin Fan 3, Tianyu Song 3, Jinshan Pan 2

Dalian Polytechnic University1, Nanjing University of Science and Technology2, Dalian Martime University3

[Paper]

👉️ Welcome to visit our website (专注底层视觉领域的信息服务平台) for low-level vision: https://lowlevelcv.com/


⛳️ To do

  • ✅ Release the code
  • ✅ Release the visual results
  • ✅ Release the dataset

⬇️ HQ-NightRain Dataset Download

Download Link
Google Drive / Baidu Netdisk (asht)

🛠 Setup

  • Type the command:
conda env create -f environment.yml
conda activate CSTNet
  • If torch1.10 download fails, please run the following command:
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge

📷️ Visual Results

● Comparative method results

Datasets Visual Results Download Link
HQ-NightRain-RS Google Drive / Baidu Netdisk (adai)
HQ-NightRain-RD Google Drive / Baidu Netdisk (m1kb)
HQ-NightRain-SD Google Drive / Baidu Netdisk (k7aq)
GTAV-NightRain Google Drive / Baidu Netdisk (b6sm)
RealRain1k-L Google Drive / Baidu Netdisk (zi73)
RealRain1k-H Google Drive / Baidu Netdisk (r4cr)
RainDS-real-RS Google Drive / Baidu Netdisk (98bt)
RainDS-real-RD Google Drive / Baidu Netdisk (1ed3)
RainDS-real-RDS Google Drive / Baidu Netdisk (9mhh)

● CST-Net results

Visual Results Download Link
Google Drive / Baidu Netdisk (n3vg)

Due to storage limitations, please contact us to obtain the Google Drive link.


🧮 Evaluation

● Run the following code to obtain the output visual results

python test.py

And you can find the output visual results in the folder " results/test/ ".

● Install the environment

We use the code provided by IQA-PyTorch for evaluation. Thanks to Chaofeng Chen!

pip install pyiqa

● Run the following command to calculate the metrics

python cal_metrics.py --inp_imgs ./results --gt_imgs ./dataset/test/target --log path_save_log

💪 Training

Run the following code to start training.

python train.py

👍 Acknowledgement

Thanks for their awesome works (IQA-PyTorch and NeRD-Rain)


❣ Citation

If this work is helpful for your research, please consider citing the following BibTeX entry.

@article{guan2025cstnet,
  title={Rethinking Nighttime Image Deraining via Learnable Color Space Transformation},
  author={Guan, Qiyuan and Chen, Xiang and Jin, Guiyue and Jin, Jiyu and Fan, Shumin and Song, Tianyu and Pan, Jinshan},
  journal={NeurIPS},
  year={2025}
}

📧 Contact

If you have any questions, please feel free to contact [email protected].


Flag Counter

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages