Skip to content

Conversation

@likunyur
Copy link
Contributor

added the macro sd_first_printk(). The macro takes "sdsk" as argument but dereferences "sdkp". This hasn't caused any real issues since all callers of sd_first_printk() have an sdkp. But fix the typo.

Signed-off-by: Li kunyu [email protected]

added the macro sd_first_printk(). The macro takes "sdsk" as argument
but dereferences "sdkp". This hasn't caused any real issues since all
callers of sd_first_printk() have an sdkp. But fix the typo.

Signed-off-by: Li kunyu <[email protected]>
tobydox pushed a commit to in-hub/linux that referenced this pull request Oct 26, 2022
commit 2b12993 upstream.

tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.

== Background ==

Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.

To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced.  eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.

== Problem ==

Here's a simplification of how guests are run on Linux' KVM:

void run_kvm_guest(void)
{
	// Prepare to run guest
	VMRESUME();
	// Clean up after guest runs
}

The execution flow for that would look something like this to the
processor:

1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()

Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:

* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.

* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".

IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.

However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in gregkh#6, it might speculatively use the address for the
instruction after the CALL in gregkh#3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.

Balanced CALL/RET instruction pairs such as in step gregkh#5 are not affected.

== Solution ==

The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.

However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.

Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.

The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.

In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.

There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.

  [ bp: Massage, incorporate review comments from Andy Cooper. ]

Signed-off-by: Daniel Sneddon <[email protected]>
Co-developed-by: Pawan Gupta <[email protected]>
Signed-off-by: Pawan Gupta <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
[cascardo: no intra-function validation]
Signed-off-by: Thadeu Lima de Souza Cascardo <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Nov 1, 2022
commit 2b12993 upstream.

tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.

== Background ==

Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.

To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced.  eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.

== Problem ==

Here's a simplification of how guests are run on Linux' KVM:

void run_kvm_guest(void)
{
	// Prepare to run guest
	VMRESUME();
	// Clean up after guest runs
}

The execution flow for that would look something like this to the
processor:

1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()

Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:

* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.

* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".

IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.

However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in gregkh#6, it might speculatively use the address for the
instruction after the CALL in gregkh#3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.

Balanced CALL/RET instruction pairs such as in step gregkh#5 are not affected.

== Solution ==

The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.

However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.

Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.

The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.

In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.

There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.

  [ bp: Massage, incorporate review comments from Andy Cooper. ]

Signed-off-by: Daniel Sneddon <[email protected]>
Co-developed-by: Pawan Gupta <[email protected]>
Signed-off-by: Pawan Gupta <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
[ bp: Adjust patch to account for kvm entry being in c ]
Signed-off-by: Suraj Jitindar Singh <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Nov 3, 2022
commit c3ed222 upstream.

Send along the already-allocated fattr along with nfs4_fs_locations, and
drop the memcpy of fattr.  We end up growing two more allocations, but this
fixes up a crash as:

PID: 790    TASK: ffff88811b43c000  CPU: 0   COMMAND: "ls"
 #0 [ffffc90000857920] panic at ffffffff81b9bfde
 gregkh#1 [ffffc900008579c0] do_trap at ffffffff81023a9b
 gregkh#2 [ffffc90000857a10] do_error_trap at ffffffff81023b78
 gregkh#3 [ffffc90000857a58] exc_stack_segment at ffffffff81be1f45
 gregkh#4 [ffffc90000857a80] asm_exc_stack_segment at ffffffff81c009de
 gregkh#5 [ffffc90000857b08] nfs_lookup at ffffffffa0302322 [nfs]
 gregkh#6 [ffffc90000857b70] __lookup_slow at ffffffff813a4a5f
 gregkh#7 [ffffc90000857c60] walk_component at ffffffff813a86c4
 gregkh#8 [ffffc90000857cb8] path_lookupat at ffffffff813a9553
 gregkh#9 [ffffc90000857cf0] filename_lookup at ffffffff813ab86b

Suggested-by: Trond Myklebust <[email protected]>
Fixes: 9558a00 ("NFS: Remove the label from the nfs4_lookup_res struct")
Signed-off-by: Benjamin Coddington <[email protected]>
Signed-off-by: Anna Schumaker <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Nov 3, 2022
commit 4f40a5b upstream.

This was missed in c3ed222 ("NFSv4: Fix free of uninitialized
nfs4_label on referral lookup.") and causes a panic when mounting
with '-o trunkdiscovery':

PID: 1604   TASK: ffff93dac3520000  CPU: 3   COMMAND: "mount.nfs"
 #0 [ffffb79140f738f8] machine_kexec at ffffffffaec64bee
 gregkh#1 [ffffb79140f73950] __crash_kexec at ffffffffaeda67fd
 gregkh#2 [ffffb79140f73a18] crash_kexec at ffffffffaeda76ed
 gregkh#3 [ffffb79140f73a30] oops_end at ffffffffaec2658d
 gregkh#4 [ffffb79140f73a50] general_protection at ffffffffaf60111e
    [exception RIP: nfs_fattr_init+0x5]
    RIP: ffffffffc0c18265  RSP: ffffb79140f73b08  RFLAGS: 00010246
    RAX: 0000000000000000  RBX: ffff93dac304a800  RCX: 0000000000000000
    RDX: ffffb79140f73bb0  RSI: ffff93dadc8cbb40  RDI: d03ee11cfaf6bd50
    RBP: ffffb79140f73be8   R8: ffffffffc0691560   R9: 0000000000000006
    R10: ffff93db3ffd3df8  R11: 0000000000000000  R12: ffff93dac4040000
    R13: ffff93dac2848e00  R14: ffffb79140f73b60  R15: ffffb79140f73b30
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 gregkh#5 [ffffb79140f73b08] _nfs41_proc_get_locations at ffffffffc0c73d53 [nfsv4]
 gregkh#6 [ffffb79140f73bf0] nfs4_proc_get_locations at ffffffffc0c83e90 [nfsv4]
 gregkh#7 [ffffb79140f73c60] nfs4_discover_trunking at ffffffffc0c83fb7 [nfsv4]
 gregkh#8 [ffffb79140f73cd8] nfs_probe_fsinfo at ffffffffc0c0f95f [nfs]
 gregkh#9 [ffffb79140f73da0] nfs_probe_server at ffffffffc0c1026a [nfs]
    RIP: 00007f6254fce26e  RSP: 00007ffc69496ac8  RFLAGS: 00000246
    RAX: ffffffffffffffda  RBX: 0000000000000000  RCX: 00007f6254fce26e
    RDX: 00005600220a82a0  RSI: 00005600220a64d0  RDI: 00005600220a6520
    RBP: 00007ffc69496c50   R8: 00005600220a8710   R9: 003035322e323231
    R10: 0000000000000000  R11: 0000000000000246  R12: 00007ffc69496c50
    R13: 00005600220a8440  R14: 0000000000000010  R15: 0000560020650ef9
    ORIG_RAX: 00000000000000a5  CS: 0033  SS: 002b

Fixes: c3ed222 ("NFSv4: Fix free of uninitialized nfs4_label on referral lookup.")
Signed-off-by: Scott Mayhew <[email protected]>
Signed-off-by: Anna Schumaker <[email protected]>
Signed-off-by: Trond Myklebust <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Nov 4, 2022
KASAN reported a UAF bug when I was running xfs/235:

 BUG: KASAN: use-after-free in xlog_recover_process_intents+0xa77/0xae0 [xfs]
 Read of size 8 at addr ffff88804391b360 by task mount/5680

 CPU: 2 PID: 5680 Comm: mount Not tainted 6.0.0-xfsx gregkh#6.0.0 77e7b52a4943a975441e5ac90a5ad7748b7867f6
 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
 Call Trace:
  <TASK>
  dump_stack_lvl+0x34/0x44
  print_report.cold+0x2cc/0x682
  kasan_report+0xa3/0x120
  xlog_recover_process_intents+0xa77/0xae0 [xfs fb841c7180aad3f8359438576e27867f5795667e]
  xlog_recover_finish+0x7d/0x970 [xfs fb841c7180aad3f8359438576e27867f5795667e]
  xfs_log_mount_finish+0x2d7/0x5d0 [xfs fb841c7180aad3f8359438576e27867f5795667e]
  xfs_mountfs+0x11d4/0x1d10 [xfs fb841c7180aad3f8359438576e27867f5795667e]
  xfs_fs_fill_super+0x13d5/0x1a80 [xfs fb841c7180aad3f8359438576e27867f5795667e]
  get_tree_bdev+0x3da/0x6e0
  vfs_get_tree+0x7d/0x240
  path_mount+0xdd3/0x17d0
  __x64_sys_mount+0x1fa/0x270
  do_syscall_64+0x2b/0x80
  entry_SYSCALL_64_after_hwframe+0x46/0xb0
 RIP: 0033:0x7ff5bc069eae
 Code: 48 8b 0d 85 1f 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 52 1f 0f 00 f7 d8 64 89 01 48
 RSP: 002b:00007ffe433fd448 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5
 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ff5bc069eae
 RDX: 00005575d7213290 RSI: 00005575d72132d0 RDI: 00005575d72132b0
 RBP: 00005575d7212fd0 R08: 00005575d7213230 R09: 00005575d7213fe0
 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
 R13: 00005575d7213290 R14: 00005575d72132b0 R15: 00005575d7212fd0
  </TASK>

 Allocated by task 5680:
  kasan_save_stack+0x1e/0x40
  __kasan_slab_alloc+0x66/0x80
  kmem_cache_alloc+0x152/0x320
  xfs_rui_init+0x17a/0x1b0 [xfs]
  xlog_recover_rui_commit_pass2+0xb9/0x2e0 [xfs]
  xlog_recover_items_pass2+0xe9/0x220 [xfs]
  xlog_recover_commit_trans+0x673/0x900 [xfs]
  xlog_recovery_process_trans+0xbe/0x130 [xfs]
  xlog_recover_process_data+0x103/0x2a0 [xfs]
  xlog_do_recovery_pass+0x548/0xc60 [xfs]
  xlog_do_log_recovery+0x62/0xc0 [xfs]
  xlog_do_recover+0x73/0x480 [xfs]
  xlog_recover+0x229/0x460 [xfs]
  xfs_log_mount+0x284/0x640 [xfs]
  xfs_mountfs+0xf8b/0x1d10 [xfs]
  xfs_fs_fill_super+0x13d5/0x1a80 [xfs]
  get_tree_bdev+0x3da/0x6e0
  vfs_get_tree+0x7d/0x240
  path_mount+0xdd3/0x17d0
  __x64_sys_mount+0x1fa/0x270
  do_syscall_64+0x2b/0x80
  entry_SYSCALL_64_after_hwframe+0x46/0xb0

 Freed by task 5680:
  kasan_save_stack+0x1e/0x40
  kasan_set_track+0x21/0x30
  kasan_set_free_info+0x20/0x30
  ____kasan_slab_free+0x144/0x1b0
  slab_free_freelist_hook+0xab/0x180
  kmem_cache_free+0x1f1/0x410
  xfs_rud_item_release+0x33/0x80 [xfs]
  xfs_trans_free_items+0xc3/0x220 [xfs]
  xfs_trans_cancel+0x1fa/0x590 [xfs]
  xfs_rui_item_recover+0x913/0xd60 [xfs]
  xlog_recover_process_intents+0x24e/0xae0 [xfs]
  xlog_recover_finish+0x7d/0x970 [xfs]
  xfs_log_mount_finish+0x2d7/0x5d0 [xfs]
  xfs_mountfs+0x11d4/0x1d10 [xfs]
  xfs_fs_fill_super+0x13d5/0x1a80 [xfs]
  get_tree_bdev+0x3da/0x6e0
  vfs_get_tree+0x7d/0x240
  path_mount+0xdd3/0x17d0
  __x64_sys_mount+0x1fa/0x270
  do_syscall_64+0x2b/0x80
  entry_SYSCALL_64_after_hwframe+0x46/0xb0

 The buggy address belongs to the object at ffff88804391b300
  which belongs to the cache xfs_rui_item of size 688
 The buggy address is located 96 bytes inside of
  688-byte region [ffff88804391b300, ffff88804391b5b0)

 The buggy address belongs to the physical page:
 page:ffffea00010e4600 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888043919320 pfn:0x43918
 head:ffffea00010e4600 order:2 compound_mapcount:0 compound_pincount:0
 flags: 0x4fff80000010200(slab|head|node=1|zone=1|lastcpupid=0xfff)
 raw: 04fff80000010200 0000000000000000 dead000000000122 ffff88807f0eadc0
 raw: ffff888043919320 0000000080140010 00000001ffffffff 0000000000000000
 page dumped because: kasan: bad access detected

 Memory state around the buggy address:
  ffff88804391b200: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
  ffff88804391b280: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 >ffff88804391b300: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                                                        ^
  ffff88804391b380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
  ffff88804391b400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ==================================================================

The test fuzzes an rmap btree block and starts writer threads to induce
a filesystem shutdown on the corrupt block.  When the filesystem is
remounted, recovery will try to replay the committed rmap intent item,
but the corruption problem causes the recovery transaction to fail.
Cancelling the transaction frees the RUD, which frees the RUI that we
recovered.

When we return to xlog_recover_process_intents, @lip is now a dangling
pointer, and we cannot use it to find the iop_recover method for the
tracepoint.  Hence we must store the item ops before calling
->iop_recover if we want to give it to the tracepoint so that the trace
data will tell us exactly which intent item failed.

Signed-off-by: Darrick J. Wong <[email protected]>
Reviewed-by: Christoph Hellwig <[email protected]>
gregkh pushed a commit that referenced this pull request Nov 23, 2022
commit 2b12993 upstream.

tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.

== Background ==

Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.

To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced.  eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.

== Problem ==

Here's a simplification of how guests are run on Linux' KVM:

void run_kvm_guest(void)
{
	// Prepare to run guest
	VMRESUME();
	// Clean up after guest runs
}

The execution flow for that would look something like this to the
processor:

1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()

Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:

* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.

* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".

IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.

However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.

Balanced CALL/RET instruction pairs such as in step #5 are not affected.

== Solution ==

The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.

However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.

Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.

The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.

In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.

There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.

  [ bp: Massage, incorporate review comments from Andy Cooper. ]

Signed-off-by: Daniel Sneddon <[email protected]>
Co-developed-by: Pawan Gupta <[email protected]>
Signed-off-by: Pawan Gupta <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
[ bp: Adjust patch to account for kvm entry being in c ]
Signed-off-by: Suraj Jitindar Singh <[email protected]>
Signed-off-by: Suleiman Souhlal <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Dec 4, 2022
test_bpf tail call tests end up as:

  test_bpf: #0 Tail call leaf jited:1 85 PASS
  test_bpf: gregkh#1 Tail call 2 jited:1 111 PASS
  test_bpf: gregkh#2 Tail call 3 jited:1 145 PASS
  test_bpf: gregkh#3 Tail call 4 jited:1 170 PASS
  test_bpf: gregkh#4 Tail call load/store leaf jited:1 190 PASS
  test_bpf: gregkh#5 Tail call load/store jited:1
  BUG: Unable to handle kernel data access on write at 0xf1b4e000
  Faulting instruction address: 0xbe86b710
  Oops: Kernel access of bad area, sig: 11 [gregkh#1]
  BE PAGE_SIZE=4K MMU=Hash PowerMac
  Modules linked in: test_bpf(+)
  CPU: 0 PID: 97 Comm: insmod Not tainted 6.1.0-rc4+ #195
  Hardware name: PowerMac3,1 750CL 0x87210 PowerMac
  NIP:  be86b710 LR: be857e88 CTR: be86b704
  REGS: f1b4df20 TRAP: 0300   Not tainted  (6.1.0-rc4+)
  MSR:  00009032 <EE,ME,IR,DR,RI>  CR: 28008242  XER: 00000000
  DAR: f1b4e000 DSISR: 42000000
  GPR00: 00000001 f1b4dfe0 c11d2280 00000000 00000000 00000000 00000002 00000000
  GPR08: f1b4e000 be86b704 f1b4e000 00000000 00000000 100d816a f2440000 fe73baa8
  GPR16: f2458000 00000000 c1941ae4 f1fe2248 00000045 c0de0000 f2458030 00000000
  GPR24: 000003e8 0000000f f2458000 f1b4dc90 3e584b46 00000000 f24466a0 c1941a00
  NIP [be86b710] 0xbe86b710
  LR [be857e88] __run_one+0xec/0x264 [test_bpf]
  Call Trace:
  [f1b4dfe0] [00000002] 0x2 (unreliable)
  Instruction dump:
  XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
  XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
  ---[ end trace 0000000000000000 ]---

This is a tentative to write above the stack. The problem is encoutered
with tests added by commit 38608ee ("bpf, tests: Add load store
test case for tail call")

This happens because tail call is done to a BPF prog with a different
stack_depth. At the time being, the stack is kept as is when the caller
tail calls its callee. But at exit, the callee restores the stack based
on its own properties. Therefore here, at each run, r1 is erroneously
increased by 32 - 16 = 16 bytes.

This was done that way in order to pass the tail call count from caller
to callee through the stack. As powerpc32 doesn't have a red zone in
the stack, it was necessary the maintain the stack as is for the tail
call. But it was not anticipated that the BPF frame size could be
different.

Let's take a new approach. Use register r4 to carry the tail call count
during the tail call, and save it into the stack at function entry if
required. This means the input parameter must be in r3, which is more
correct as it is a 32 bits parameter, then tail call better match with
normal BPF function entry, the down side being that we move that input
parameter back and forth between r3 and r4. That can be optimised later.

Doing that also has the advantage of maximising the common parts between
tail calls and a normal function exit.

With the fix, tail call tests are now successfull:

  test_bpf: #0 Tail call leaf jited:1 53 PASS
  test_bpf: gregkh#1 Tail call 2 jited:1 115 PASS
  test_bpf: gregkh#2 Tail call 3 jited:1 154 PASS
  test_bpf: gregkh#3 Tail call 4 jited:1 165 PASS
  test_bpf: gregkh#4 Tail call load/store leaf jited:1 101 PASS
  test_bpf: gregkh#5 Tail call load/store jited:1 141 PASS
  test_bpf: gregkh#6 Tail call error path, max count reached jited:1 994 PASS
  test_bpf: gregkh#7 Tail call count preserved across function calls jited:1 140975 PASS
  test_bpf: gregkh#8 Tail call error path, NULL target jited:1 110 PASS
  test_bpf: gregkh#9 Tail call error path, index out of range jited:1 69 PASS
  test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]

Suggested-by: Naveen N. Rao <[email protected]>
Fixes: 51c66ad ("powerpc/bpf: Implement extended BPF on PPC32")
Cc: [email protected]
Signed-off-by: Christophe Leroy <[email protected]>
Tested-by: Naveen N. Rao <[email protected]
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/757acccb7fbfc78efa42dcf3c974b46678198905.1669278887.git.christophe.leroy@csgroup.eu
imaami pushed a commit to imaami/linux that referenced this pull request Dec 5, 2022
commit 89d21e2 upstream.

test_bpf tail call tests end up as:

  test_bpf: #0 Tail call leaf jited:1 85 PASS
  test_bpf: gregkh#1 Tail call 2 jited:1 111 PASS
  test_bpf: gregkh#2 Tail call 3 jited:1 145 PASS
  test_bpf: gregkh#3 Tail call 4 jited:1 170 PASS
  test_bpf: gregkh#4 Tail call load/store leaf jited:1 190 PASS
  test_bpf: gregkh#5 Tail call load/store jited:1
  BUG: Unable to handle kernel data access on write at 0xf1b4e000
  Faulting instruction address: 0xbe86b710
  Oops: Kernel access of bad area, sig: 11 [gregkh#1]
  BE PAGE_SIZE=4K MMU=Hash PowerMac
  Modules linked in: test_bpf(+)
  CPU: 0 PID: 97 Comm: insmod Not tainted 6.1.0-rc4+ #195
  Hardware name: PowerMac3,1 750CL 0x87210 PowerMac
  NIP:  be86b710 LR: be857e88 CTR: be86b704
  REGS: f1b4df20 TRAP: 0300   Not tainted  (6.1.0-rc4+)
  MSR:  00009032 <EE,ME,IR,DR,RI>  CR: 28008242  XER: 00000000
  DAR: f1b4e000 DSISR: 42000000
  GPR00: 00000001 f1b4dfe0 c11d2280 00000000 00000000 00000000 00000002 00000000
  GPR08: f1b4e000 be86b704 f1b4e000 00000000 00000000 100d816a f2440000 fe73baa8
  GPR16: f2458000 00000000 c1941ae4 f1fe2248 00000045 c0de0000 f2458030 00000000
  GPR24: 000003e8 0000000f f2458000 f1b4dc90 3e584b46 00000000 f24466a0 c1941a00
  NIP [be86b710] 0xbe86b710
  LR [be857e88] __run_one+0xec/0x264 [test_bpf]
  Call Trace:
  [f1b4dfe0] [00000002] 0x2 (unreliable)
  Instruction dump:
  XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
  XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
  ---[ end trace 0000000000000000 ]---

This is a tentative to write above the stack. The problem is encoutered
with tests added by commit 38608ee ("bpf, tests: Add load store
test case for tail call")

This happens because tail call is done to a BPF prog with a different
stack_depth. At the time being, the stack is kept as is when the caller
tail calls its callee. But at exit, the callee restores the stack based
on its own properties. Therefore here, at each run, r1 is erroneously
increased by 32 - 16 = 16 bytes.

This was done that way in order to pass the tail call count from caller
to callee through the stack. As powerpc32 doesn't have a red zone in
the stack, it was necessary the maintain the stack as is for the tail
call. But it was not anticipated that the BPF frame size could be
different.

Let's take a new approach. Use register r4 to carry the tail call count
during the tail call, and save it into the stack at function entry if
required. This means the input parameter must be in r3, which is more
correct as it is a 32 bits parameter, then tail call better match with
normal BPF function entry, the down side being that we move that input
parameter back and forth between r3 and r4. That can be optimised later.

Doing that also has the advantage of maximising the common parts between
tail calls and a normal function exit.

With the fix, tail call tests are now successfull:

  test_bpf: #0 Tail call leaf jited:1 53 PASS
  test_bpf: gregkh#1 Tail call 2 jited:1 115 PASS
  test_bpf: gregkh#2 Tail call 3 jited:1 154 PASS
  test_bpf: gregkh#3 Tail call 4 jited:1 165 PASS
  test_bpf: gregkh#4 Tail call load/store leaf jited:1 101 PASS
  test_bpf: gregkh#5 Tail call load/store jited:1 141 PASS
  test_bpf: gregkh#6 Tail call error path, max count reached jited:1 994 PASS
  test_bpf: gregkh#7 Tail call count preserved across function calls jited:1 140975 PASS
  test_bpf: gregkh#8 Tail call error path, NULL target jited:1 110 PASS
  test_bpf: gregkh#9 Tail call error path, index out of range jited:1 69 PASS
  test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]

Suggested-by: Naveen N. Rao <[email protected]>
Fixes: 51c66ad ("powerpc/bpf: Implement extended BPF on PPC32")
Cc: [email protected]
Signed-off-by: Christophe Leroy <[email protected]>
Tested-by: Naveen N. Rao <[email protected]
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/757acccb7fbfc78efa42dcf3c974b46678198905.1669278887.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <[email protected]>
gregkh pushed a commit that referenced this pull request Dec 8, 2022
commit 89d21e2 upstream.

test_bpf tail call tests end up as:

  test_bpf: #0 Tail call leaf jited:1 85 PASS
  test_bpf: #1 Tail call 2 jited:1 111 PASS
  test_bpf: #2 Tail call 3 jited:1 145 PASS
  test_bpf: #3 Tail call 4 jited:1 170 PASS
  test_bpf: #4 Tail call load/store leaf jited:1 190 PASS
  test_bpf: #5 Tail call load/store jited:1
  BUG: Unable to handle kernel data access on write at 0xf1b4e000
  Faulting instruction address: 0xbe86b710
  Oops: Kernel access of bad area, sig: 11 [#1]
  BE PAGE_SIZE=4K MMU=Hash PowerMac
  Modules linked in: test_bpf(+)
  CPU: 0 PID: 97 Comm: insmod Not tainted 6.1.0-rc4+ #195
  Hardware name: PowerMac3,1 750CL 0x87210 PowerMac
  NIP:  be86b710 LR: be857e88 CTR: be86b704
  REGS: f1b4df20 TRAP: 0300   Not tainted  (6.1.0-rc4+)
  MSR:  00009032 <EE,ME,IR,DR,RI>  CR: 28008242  XER: 00000000
  DAR: f1b4e000 DSISR: 42000000
  GPR00: 00000001 f1b4dfe0 c11d2280 00000000 00000000 00000000 00000002 00000000
  GPR08: f1b4e000 be86b704 f1b4e000 00000000 00000000 100d816a f2440000 fe73baa8
  GPR16: f2458000 00000000 c1941ae4 f1fe2248 00000045 c0de0000 f2458030 00000000
  GPR24: 000003e8 0000000f f2458000 f1b4dc90 3e584b46 00000000 f24466a0 c1941a00
  NIP [be86b710] 0xbe86b710
  LR [be857e88] __run_one+0xec/0x264 [test_bpf]
  Call Trace:
  [f1b4dfe0] [00000002] 0x2 (unreliable)
  Instruction dump:
  XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
  XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
  ---[ end trace 0000000000000000 ]---

This is a tentative to write above the stack. The problem is encoutered
with tests added by commit 38608ee ("bpf, tests: Add load store
test case for tail call")

This happens because tail call is done to a BPF prog with a different
stack_depth. At the time being, the stack is kept as is when the caller
tail calls its callee. But at exit, the callee restores the stack based
on its own properties. Therefore here, at each run, r1 is erroneously
increased by 32 - 16 = 16 bytes.

This was done that way in order to pass the tail call count from caller
to callee through the stack. As powerpc32 doesn't have a red zone in
the stack, it was necessary the maintain the stack as is for the tail
call. But it was not anticipated that the BPF frame size could be
different.

Let's take a new approach. Use register r4 to carry the tail call count
during the tail call, and save it into the stack at function entry if
required. This means the input parameter must be in r3, which is more
correct as it is a 32 bits parameter, then tail call better match with
normal BPF function entry, the down side being that we move that input
parameter back and forth between r3 and r4. That can be optimised later.

Doing that also has the advantage of maximising the common parts between
tail calls and a normal function exit.

With the fix, tail call tests are now successfull:

  test_bpf: #0 Tail call leaf jited:1 53 PASS
  test_bpf: #1 Tail call 2 jited:1 115 PASS
  test_bpf: #2 Tail call 3 jited:1 154 PASS
  test_bpf: #3 Tail call 4 jited:1 165 PASS
  test_bpf: #4 Tail call load/store leaf jited:1 101 PASS
  test_bpf: #5 Tail call load/store jited:1 141 PASS
  test_bpf: #6 Tail call error path, max count reached jited:1 994 PASS
  test_bpf: #7 Tail call count preserved across function calls jited:1 140975 PASS
  test_bpf: #8 Tail call error path, NULL target jited:1 110 PASS
  test_bpf: #9 Tail call error path, index out of range jited:1 69 PASS
  test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]

Suggested-by: Naveen N. Rao <[email protected]>
Fixes: 51c66ad ("powerpc/bpf: Implement extended BPF on PPC32")
Cc: [email protected]
Signed-off-by: Christophe Leroy <[email protected]>
Tested-by: Naveen N. Rao <[email protected]
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/757acccb7fbfc78efa42dcf3c974b46678198905.1669278887.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <[email protected]>
piso77 pushed a commit to piso77/linux that referenced this pull request Dec 12, 2022
Mark arch_stack_walk() as noinstr instead of notrace and inline functions
called from arch_stack_walk() as __always_inline so that user does not
put any instrumentations on it, because this function can be used from
return_address() which is used by lockdep.

Without this, if the kernel built with CONFIG_LOCKDEP=y, just probing
arch_stack_walk() via <tracefs>/kprobe_events will crash the kernel on
arm64.

 # echo p arch_stack_walk >> ${TRACEFS}/kprobe_events
 # echo 1 > ${TRACEFS}/events/kprobes/enable
  kprobes: Failed to recover from reentered kprobes.
  kprobes: Dump kprobe:
  .symbol_name = arch_stack_walk, .offset = 0, .addr = arch_stack_walk+0x0/0x1c0
  ------------[ cut here ]------------
  kernel BUG at arch/arm64/kernel/probes/kprobes.c:241!
  kprobes: Failed to recover from reentered kprobes.
  kprobes: Dump kprobe:
  .symbol_name = arch_stack_walk, .offset = 0, .addr = arch_stack_walk+0x0/0x1c0
  ------------[ cut here ]------------
  kernel BUG at arch/arm64/kernel/probes/kprobes.c:241!
  PREEMPT SMP
  Modules linked in:
  CPU: 0 PID: 17 Comm: migration/0 Tainted: G                 N 6.1.0-rc5+ gregkh#6
  Hardware name: linux,dummy-virt (DT)
  Stopper: 0x0 <- 0x0
  pstate: 600003c5 (nZCv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
  pc : kprobe_breakpoint_handler+0x178/0x17c
  lr : kprobe_breakpoint_handler+0x178/0x17c
  sp : ffff8000080d3090
  x29: ffff8000080d3090 x28: ffff0df5845798c0 x27: ffffc4f59057a774
  x26: ffff0df5ffbba770 x25: ffff0df58f420f18 x24: ffff49006f641000
  x23: ffffc4f590579768 x22: ffff0df58f420f18 x21: ffff8000080d31c0
  x20: ffffc4f590579768 x19: ffffc4f590579770 x18: 0000000000000006
  x17: 5f6b636174735f68 x16: 637261203d207264 x15: 64612e202c30203d
  x14: 2074657366666f2e x13: 30633178302f3078 x12: 302b6b6c61775f6b
  x11: 636174735f686372 x10: ffffc4f590dc5bd8 x9 : ffffc4f58eb31958
  x8 : 00000000ffffefff x7 : ffffc4f590dc5bd8 x6 : 80000000fffff000
  x5 : 000000000000bff4 x4 : 0000000000000000 x3 : 0000000000000000
  x2 : 0000000000000000 x1 : ffff0df5845798c0 x0 : 0000000000000064
  Call trace:
  kprobes: Failed to recover from reentered kprobes.
  kprobes: Dump kprobe:
  .symbol_name = arch_stack_walk, .offset = 0, .addr = arch_stack_walk+0x0/0x1c0
  ------------[ cut here ]------------
  kernel BUG at arch/arm64/kernel/probes/kprobes.c:241!

Fixes: 39ef362 ("arm64: Make return_address() use arch_stack_walk()")
Cc: [email protected]
Signed-off-by: Masami Hiramatsu (Google) <[email protected]>
Acked-by: Mark Rutland <[email protected]>
Link: https://lore.kernel.org/r/166994751368.439920.3236636557520824664.stgit@devnote3
Signed-off-by: Will Deacon <[email protected]>
sam-aws pushed a commit to amazonlinux/linux that referenced this pull request Dec 14, 2022
Petr Machata says:

====================
mlxsw: Add Spectrum-1 ip6gre support

Ido Schimmel writes:

Currently, mlxsw only supports ip6gre offload on Spectrum-2 and newer
ASICs. Spectrum-1 can also offload ip6gre tunnels, but it needs double
entry router interfaces (RIFs) for the RIFs representing these tunnels.
In addition, the RIF index needs to be even. This is handled in
patches #1-#3.

The implementation can otherwise be shared between all Spectrum
generations. This is handled in patches #4-#5.

Patch gregkh#6 moves a mlxsw ip6gre selftest to a shared directory, as ip6gre
is no longer only supported on Spectrum-2 and newer ASICs.

This work is motivated by users that require multiple GRE tunnels that
all share the same underlay VRF. Currently, mlxsw only supports
decapsulation based on the underlay destination IP (i.e., not taking the
GRE key into account), so users need to configure these tunnels with
different source IPs and IPv6 addresses are easier to spare than IPv4.

Tested using existing ip6gre forwarding selftests.
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
sam-aws pushed a commit to amazonlinux/linux that referenced this pull request Dec 14, 2022
…g the sock

There is a race condition in vxlan that when deleting a vxlan device
during receiving packets, there is a possibility that the sock is
released after getting vxlan_sock vs from sk_user_data. Then in
later vxlan_ecn_decapsulate(), vxlan_get_sk_family() we will got
NULL pointer dereference. e.g.

   #0 [ffffa25ec6978a38] machine_kexec at ffffffff8c669757
   #1 [ffffa25ec6978a90] __crash_kexec at ffffffff8c7c0a4d
   #2 [ffffa25ec6978b58] crash_kexec at ffffffff8c7c1c48
   #3 [ffffa25ec6978b60] oops_end at ffffffff8c627f2b
   #4 [ffffa25ec6978b80] page_fault_oops at ffffffff8c678fcb
   #5 [ffffa25ec6978bd8] exc_page_fault at ffffffff8d109542
   gregkh#6 [ffffa25ec6978c00] asm_exc_page_fault at ffffffff8d200b62
      [exception RIP: vxlan_ecn_decapsulate+0x3b]
      RIP: ffffffffc1014e7b  RSP: ffffa25ec6978cb0  RFLAGS: 00010246
      RAX: 0000000000000008  RBX: ffff8aa000888000  RCX: 0000000000000000
      RDX: 000000000000000e  RSI: ffff8a9fc7ab803e  RDI: ffff8a9fd1168700
      RBP: ffff8a9fc7ab803e   R8: 0000000000700000   R9: 00000000000010ae
      R10: ffff8a9fcb748980  R11: 0000000000000000  R12: ffff8a9fd1168700
      R13: ffff8aa000888000  R14: 00000000002a0000  R15: 00000000000010ae
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   gregkh#7 [ffffa25ec6978ce8] vxlan_rcv at ffffffffc10189cd [vxlan]
   gregkh#8 [ffffa25ec6978d90] udp_queue_rcv_one_skb at ffffffff8cfb6507
   gregkh#9 [ffffa25ec6978dc0] udp_unicast_rcv_skb at ffffffff8cfb6e45
  gregkh#10 [ffffa25ec6978dc8] __udp4_lib_rcv at ffffffff8cfb8807
  gregkh#11 [ffffa25ec6978e20] ip_protocol_deliver_rcu at ffffffff8cf76951
  gregkh#12 [ffffa25ec6978e48] ip_local_deliver at ffffffff8cf76bde
  gregkh#13 [ffffa25ec6978ea0] __netif_receive_skb_one_core at ffffffff8cecde9b
  gregkh#14 [ffffa25ec6978ec8] process_backlog at ffffffff8cece139
  gregkh#15 [ffffa25ec6978f00] __napi_poll at ffffffff8ceced1a
  gregkh#16 [ffffa25ec6978f28] net_rx_action at ffffffff8cecf1f3
  gregkh#17 [ffffa25ec6978fa0] __softirqentry_text_start at ffffffff8d4000ca
  gregkh#18 [ffffa25ec6978ff0] do_softirq at ffffffff8c6fbdc3

Reproducer: https://github.com/Mellanox/ovs-tests/blob/master/test-ovs-vxlan-remove-tunnel-during-traffic.sh

Fix this by waiting for all sk_user_data reader to finish before
releasing the sock.

Reported-by: Jianlin Shi <[email protected]>
Suggested-by: Jakub Sitnicki <[email protected]>
Fixes: 6a93cc9 ("udp-tunnel: Add a few more UDP tunnel APIs")
Signed-off-by: Hangbin Liu <[email protected]>
Reviewed-by: Jiri Pirko <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
sam-aws pushed a commit to amazonlinux/linux that referenced this pull request Dec 14, 2022
Ido Schimmel says:

====================
bridge: mcast: Extensions for EVPN

tl;dr
=====

This patchset creates feature parity between user space and the kernel
and allows the former to install and replace MDB port group entries with
a source list and associated filter mode. This is required for EVPN use
cases where multicast state is not derived from snooped IGMP/MLD
packets, but instead derived from EVPN routes exchanged by the control
plane in user space.

Background
==========

IGMPv3 [1] and MLDv2 [2] differ from earlier versions of the protocols
in that they add support for source-specific multicast. That is, hosts
can advertise interest in listening to a particular multicast address
only from specific source addresses or from all sources except for
specific source addresses.

In kernel 5.10 [3][4], the bridge driver gained the ability to snoop
IGMPv3/MLDv2 packets and install corresponding MDB port group entries.
For example, a snooped IGMPv3 Membership Report that contains a single
MODE_IS_EXCLUDE record for group 239.10.10.10 with sources 192.0.2.1,
192.0.2.2, 192.0.2.20 and 192.0.2.21 would trigger the creation of these
entries:

 # bridge -d mdb show
 dev br0 port veth1 grp 239.10.10.10 src 192.0.2.21 temp filter_mode include proto kernel  blocked
 dev br0 port veth1 grp 239.10.10.10 src 192.0.2.20 temp filter_mode include proto kernel  blocked
 dev br0 port veth1 grp 239.10.10.10 src 192.0.2.2 temp filter_mode include proto kernel  blocked
 dev br0 port veth1 grp 239.10.10.10 src 192.0.2.1 temp filter_mode include proto kernel  blocked
 dev br0 port veth1 grp 239.10.10.10 temp filter_mode exclude source_list 192.0.2.21/0.00,192.0.2.20/0.00,192.0.2.2/0.00,192.0.2.1/0.00 proto kernel

While the kernel can install and replace entries with a filter mode and
source list, user space cannot. It can only add EXCLUDE entries with an
empty source list, which is sufficient for IGMPv2/MLDv1, but not for
IGMPv3/MLDv2.

Use cases where the multicast state is not derived from snooped packets,
but instead derived from routes exchanged by the user space control
plane require feature parity between user space and the kernel in terms
of MDB configuration. Such a use case is detailed in the next section.

Motivation
==========

RFC 7432 [5] defines a "MAC/IP Advertisement route" (type 2) [6] that
allows NVE switches in the EVPN network to advertise and learn
reachability information for unicast MAC addresses. Traffic destined to
a unicast MAC address can therefore be selectively forwarded to a single
NVE switch behind which the MAC is located.

The same is not true for IP multicast traffic. Such traffic is simply
flooded as BUM to all NVE switches in the broadcast domain (BD),
regardless if a switch has interested receivers for the multicast stream
or not. This is especially problematic for overlay networks that make
heavy use of multicast.

The issue is addressed by RFC 9251 [7] that defines a "Selective
Multicast Ethernet Tag Route" (type 6) [8] which allows NVE switches in
the EVPN network to advertise multicast streams that they are interested
in. This is done by having each switch suppress IGMP/MLD packets from
being transmitted to the NVE network and instead communicate the
information over BGP to other switches.

As far as the bridge driver is concerned, the above means that the
multicast state (i.e., {multicast address, group timer, filter-mode,
(source records)}) for the VXLAN bridge port is not populated by the
kernel from snooped IGMP/MLD packets (they are suppressed), but instead
by user space. Specifically, by the routing daemon that is exchanging
EVPN routes with other NVE switches.

Changes are obviously also required in the VXLAN driver, but they are
the subject of future patchsets. See the "Future work" section.

Implementation
==============

The user interface is extended to allow user space to specify the filter
mode of the MDB port group entry and its source list. Replace support is
also added so that user space would not need to remove an entry and
re-add it only to edit its source list or filter mode, as that would
result in packet loss. Example usage:

 # bridge mdb replace dev br0 port dummy10 grp 239.1.1.1 permanent \
	source_list 192.0.2.1,192.0.2.3 filter_mode exclude proto zebra
 # bridge -d -s mdb show
 dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.3 permanent filter_mode include proto zebra  blocked    0.00
 dev br0 port dummy10 grp 239.1.1.1 src 192.0.2.1 permanent filter_mode include proto zebra  blocked    0.00
 dev br0 port dummy10 grp 239.1.1.1 permanent filter_mode exclude source_list 192.0.2.3/0.00,192.0.2.1/0.00 proto zebra     0.00

The netlink interface is extended with a few new attributes in the
RTM_NEWMDB request message:

[ struct nlmsghdr ]
[ struct br_port_msg ]
[ MDBA_SET_ENTRY ]
	struct br_mdb_entry
[ MDBA_SET_ENTRY_ATTRS ]
	[ MDBE_ATTR_SOURCE ]
		struct in_addr / struct in6_addr
	[ MDBE_ATTR_SRC_LIST ]		// new
		[ MDBE_SRC_LIST_ENTRY ]
			[ MDBE_SRCATTR_ADDRESS ]
				struct in_addr / struct in6_addr
		[ ...]
	[ MDBE_ATTR_GROUP_MODE ]	// new
		u8
	[ MDBE_ATTR_RTPORT ]		// new
		u8

No changes are required in RTM_NEWMDB responses and notifications, as
all the information can already be dumped by the kernel today.

Testing
=======

Tested with existing bridge multicast selftests: bridge_igmp.sh,
bridge_mdb_port_down.sh, bridge_mdb.sh, bridge_mld.sh,
bridge_vlan_mcast.sh.

In addition, added many new test cases for existing as well as for new
MDB functionality.

Patchset overview
=================

Patches #1-gregkh#8 are non-functional preparations for the core changes in
later patches.

Patches gregkh#9-gregkh#10 allow user space to install (*, G) entries with a source
list and associated filter mode. Specifically, patch gregkh#9 adds the
necessary kernel plumbing and patch gregkh#10 exposes the new functionality to
user space via a few new attributes.

Patch gregkh#11 allows user space to specify the routing protocol of new MDB
port group entries so that a routing daemon could differentiate between
entries installed by it and those installed by an administrator.

Patch gregkh#12 allows user space to replace MDB port group entries. This is
useful, for example, when user space wants to add a new source to a
source list. Instead of deleting a (*, G) entry and re-adding it with an
extended source list (which would result in packet loss), user space can
simply replace the current entry.

Patches gregkh#13-gregkh#14 add tests for existing MDB functionality as well as for
all new functionality added in this patchset.

Future work
===========

The VXLAN driver will need to be extended with an MDB so that it could
selectively forward IP multicast traffic to NVE switches with interested
receivers instead of simply flooding it to all switches as BUM.

The idea is to reuse the existing MDB interface for the VXLAN driver in
a similar way to how the FDB interface is shared between the bridge and
VXLAN drivers.

From command line perspective, configuration will look as follows:

 # bridge mdb add dev br0 port vxlan0 grp 239.1.1.1 permanent \
	filter_mode exclude source_list 198.50.100.1,198.50.100.2

 # bridge mdb add dev vxlan0 port vxlan0 grp 239.1.1.1 permanent \
	filter_mode include source_list 198.50.100.3,198.50.100.4 \
	dst 192.0.2.1 dst_port 4789 src_vni 2

 # bridge mdb add dev vxlan0 port vxlan0 grp 239.1.1.1 permanent \
	filter_mode exclude source_list 198.50.100.1,198.50.100.2 \
	dst 192.0.2.2 dst_port 4789 src_vni 2

Where the first command is enabled by this set, but the next two will be
the subject of future work.

From netlink perspective, the existing PF_BRIDGE/RTM_*MDB messages will
be extended to the VXLAN driver. This means that a few new attributes
will be added (e.g., 'MDBE_ATTR_SRC_VNI') and that the handlers for
these messages will need to move to net/core/rtnetlink.c. The rtnetlink
code will call into the appropriate driver based on the ifindex
specified in the ancillary header.

iproute2 patches can be found here [9].

Changelog
=========

Since v1 [10]:

* Patch gregkh#12: Remove extack from br_mdb_replace_group_sg().
* Patch gregkh#12: Change 'nlflags' to u16 and move it after 'filter_mode' to
  pack the structure.

Since RFC [11]:

* Patch gregkh#6: New patch.
* Patch gregkh#9: Use an array instead of a list to store source entries.
* Patch gregkh#10: Use an array instead of list to store source entries.
* Patch gregkh#10: Drop br_mdb_config_attrs_fini().
* Patch gregkh#11: Reject protocol for host entries.
* Patch gregkh#13: New patch.
* Patch gregkh#14: New patch.

[1] https://datatracker.ietf.org/doc/html/rfc3376
[2] https://www.rfc-editor.org/rfc/rfc3810
[3] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6af52ae2ed14a6bc756d5606b29097dfd76740b8
[4] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=68d4fd30c83b1b208e08c954cd45e6474b148c87
[5] https://datatracker.ietf.org/doc/html/rfc7432
[6] https://datatracker.ietf.org/doc/html/rfc7432#section-7.2
[7] https://datatracker.ietf.org/doc/html/rfc9251
[8] https://datatracker.ietf.org/doc/html/rfc9251#section-9.1
[9] https://github.com/idosch/iproute2/commits/submit/mdb_v1
[10] https://lore.kernel.org/netdev/[email protected]/
[11] https://lore.kernel.org/netdev/[email protected]/
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Dec 16, 2022
We need to check if we have a OS prefix, otherwise we stumble on a
metric segv that I'm now seeing in Arnaldo's tree:

  $ gdb --args perf stat -M Backend true
  ...
  Performance counter stats for 'true':

          4,712,355      TOPDOWN.SLOTS                    #     17.3 % tma_core_bound

  Program received signal SIGSEGV, Segmentation fault.
  __strlen_evex () at ../sysdeps/x86_64/multiarch/strlen-evex.S:77
  77      ../sysdeps/x86_64/multiarch/strlen-evex.S: No such file or directory.
  (gdb) bt
  #0  __strlen_evex () at ../sysdeps/x86_64/multiarch/strlen-evex.S:77
  gregkh#1  0x00007ffff74749a5 in __GI__IO_fputs (str=0x0, fp=0x7ffff75f5680 <_IO_2_1_stderr_>)
  gregkh#2  0x0000555555779f28 in do_new_line_std (config=0x555555e077c0 <stat_config>, os=0x7fffffffbf10) at util/stat-display.c:356
  gregkh#3  0x000055555577a081 in print_metric_std (config=0x555555e077c0 <stat_config>, ctx=0x7fffffffbf10, color=0x0, fmt=0x5555558b77b5 "%8.1f", unit=0x7fffffffbb10 "%  tma_memory_bound", val=13.165355724442199) at util/stat-display.c:380
  gregkh#4  0x00005555557768b6 in generic_metric (config=0x555555e077c0 <stat_config>, metric_expr=0x55555593d5b7 "((CYCLE_ACTIVITY.STALLS_MEM_ANY + EXE_ACTIVITY.BOUND_ON_STORES) / (CYCLE_ACTIVITY.STALLS_TOTAL + (EXE_ACTIVITY.1_PORTS_UTIL + tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL) + EXE_ACTIVITY.BOUND_ON_STORES))"..., metric_events=0x555555f334e0, metric_refs=0x555555ec81d0, name=0x555555f32e80 "TOPDOWN.SLOTS", metric_name=0x555555f26c80 "tma_memory_bound", metric_unit=0x55555593d5b1 "100%", runtime=0, map_idx=0, out=0x7fffffffbd90, st=0x555555e9e620 <rt_stat>) at util/stat-shadow.c:934
  gregkh#5  0x0000555555778cac in perf_stat__print_shadow_stats (config=0x555555e077c0 <stat_config>, evsel=0x555555f289d0, avg=4712355, map_idx=0, out=0x7fffffffbd90, metric_events=0x555555e078e8 <stat_config+296>, st=0x555555e9e620 <rt_stat>) at util/stat-shadow.c:1329
  gregkh#6  0x000055555577b6a0 in printout (config=0x555555e077c0 <stat_config>, os=0x7fffffffbf10, uval=4712355, run=325322, ena=325322, noise=4712355, map_idx=0) at util/stat-display.c:741
  gregkh#7  0x000055555577bc74 in print_counter_aggrdata (config=0x555555e077c0 <stat_config>, counter=0x555555f289d0, s=0, os=0x7fffffffbf10) at util/stat-display.c:838
  gregkh#8  0x000055555577c1d8 in print_counter (config=0x555555e077c0 <stat_config>, counter=0x555555f289d0, os=0x7fffffffbf10) at util/stat-display.c:957
  gregkh#9  0x000055555577dba0 in evlist__print_counters (evlist=0x555555ec3610, config=0x555555e077c0 <stat_config>, _target=0x555555e01c80 <target>, ts=0x0, argc=1, argv=0x7fffffffe450) at util/stat-display.c:1413
  gregkh#10 0x00005555555fc821 in print_counters (ts=0x0, argc=1, argv=0x7fffffffe450) at builtin-stat.c:1040
  gregkh#11 0x000055555560091a in cmd_stat (argc=1, argv=0x7fffffffe450) at builtin-stat.c:2665
  gregkh#12 0x00005555556b1eea in run_builtin (p=0x555555e11f70 <commands+336>, argc=4, argv=0x7fffffffe450) at perf.c:322
  gregkh#13 0x00005555556b2181 in handle_internal_command (argc=4, argv=0x7fffffffe450) at perf.c:376
  gregkh#14 0x00005555556b22d7 in run_argv (argcp=0x7fffffffe27c, argv=0x7fffffffe270) at perf.c:420
  gregkh#15 0x00005555556b26ef in main (argc=4, argv=0x7fffffffe450) at perf.c:550
  (gdb)

Fixes: f123b2d ("perf stat: Remove prefix argument in print_metric_headers()")
Signed-off-by: Ian Rogers <[email protected]>
Acked-by: Namhyung Kim <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Athira Jajeev <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: James Clark <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Kan Liang <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Xing Zhengjun <[email protected]>
Link: http://lore.kernel.org/lkml/CAP-5=fUOjSM5HajU9TCD6prY39LbX4OQbkEbtKPPGRBPBN=_VQ@mail.gmail.com
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
piso77 pushed a commit to piso77/linux that referenced this pull request Dec 16, 2022
The msan reported a use-of-uninitialized-value warning for the struct
lock_contention_data in lock_contention_read().  While it'd be filled
by bpf_map_lookup_elem(), let's just initialize it to silence the
warning.

  ==12524==WARNING: MemorySanitizer: use-of-uninitialized-value
  #0 0x562b0f16b1cd in lock_contention_read  util/bpf_lock_contention.c:139:7
  gregkh#1 0x562b0ef65ec6 in __cmd_contention  builtin-lock.c:1737:3
  gregkh#2 0x562b0ef65ec6 in cmd_lock  builtin-lock.c:1992:8
  gregkh#3 0x562b0ee7f50b in run_builtin  perf.c:322:11
  gregkh#4 0x562b0ee7efc1 in handle_internal_command  perf.c:376:8
  gregkh#5 0x562b0ee7e1e9 in run_argv  perf.c:420:2
  gregkh#6 0x562b0ee7e1e9 in main  perf.c:550:3
  gregkh#7 0x7f065f10e632 in __libc_start_main (/usr/lib64/libc.so.6+0x61632)
  gregkh#8 0x562b0edf2fa9 in _start (perf+0xfa9)
  SUMMARY: MemorySanitizer: use-of-uninitialized-value (perf+0xe15160) in lock_contention_read

Signed-off-by: Namhyung Kim <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Dec 21, 2022
The offset addition could overflow and pass the used size check given an
attribute with very large size (e.g., 0xffffff7f) while parsing MFT
attributes. This could lead to out-of-bound memory R/W if we try to
access the next attribute derived by Add2Ptr(attr, asize)

[   32.963847] BUG: unable to handle page fault for address: ffff956a83c76067
[   32.964301] #PF: supervisor read access in kernel mode
[   32.964526] #PF: error_code(0x0000) - not-present page
[   32.964893] PGD 4dc01067 P4D 4dc01067 PUD 0
[   32.965316] Oops: 0000 [gregkh#1] PREEMPT SMP NOPTI
[   32.965727] CPU: 0 PID: 243 Comm: mount Not tainted 5.19.0+ gregkh#6
[   32.966050] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[   32.966628] RIP: 0010:mi_enum_attr+0x44/0x110
[   32.967239] Code: 89 f0 48 29 c8 48 89 c1 39 c7 0f 86 94 00 00 00 8b 56 04 83 fa 17 0f 86 88 00 00 00 89 d0 01 ca 48 01 f0 8d 4a 08 39 f9a
[   32.968101] RSP: 0018:ffffba15c06a7c38 EFLAGS: 00000283
[   32.968364] RAX: ffff956a83c76067 RBX: ffff956983c76050 RCX: 000000000000006f
[   32.968651] RDX: 0000000000000067 RSI: ffff956983c760e8 RDI: 00000000000001c8
[   32.968963] RBP: ffffba15c06a7c38 R08: 0000000000000064 R09: 00000000ffffff7f
[   32.969249] R10: 0000000000000007 R11: ffff956983c760e8 R12: ffff95698225e000
[   32.969870] R13: 0000000000000000 R14: ffffba15c06a7cd8 R15: ffff95698225e170
[   32.970655] FS:  00007fdab8189e40(0000) GS:ffff9569fdc00000(0000) knlGS:0000000000000000
[   32.971098] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   32.971378] CR2: ffff956a83c76067 CR3: 0000000002c58000 CR4: 00000000000006f0
[   32.972098] Call Trace:
[   32.972842]  <TASK>
[   32.973341]  ni_enum_attr_ex+0xda/0xf0
[   32.974087]  ntfs_iget5+0x1db/0xde0
[   32.974386]  ? slab_post_alloc_hook+0x53/0x270
[   32.974778]  ? ntfs_fill_super+0x4c7/0x12a0
[   32.975115]  ntfs_fill_super+0x5d6/0x12a0
[   32.975336]  get_tree_bdev+0x175/0x270
[   32.975709]  ? put_ntfs+0x150/0x150
[   32.975956]  ntfs_fs_get_tree+0x15/0x20
[   32.976191]  vfs_get_tree+0x2a/0xc0
[   32.976374]  ? capable+0x19/0x20
[   32.976572]  path_mount+0x484/0xaa0
[   32.977025]  ? putname+0x57/0x70
[   32.977380]  do_mount+0x80/0xa0
[   32.977555]  __x64_sys_mount+0x8b/0xe0
[   32.978105]  do_syscall_64+0x3b/0x90
[   32.978830]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[   32.979311] RIP: 0033:0x7fdab72e948a
[   32.980015] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[   32.981251] RSP: 002b:00007ffd15b87588 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5
[   32.981832] RAX: ffffffffffffffda RBX: 0000557de0aaf060 RCX: 00007fdab72e948a
[   32.982234] RDX: 0000557de0aaf260 RSI: 0000557de0aaf2e0 RDI: 0000557de0ab7ce0
[   32.982714] RBP: 0000000000000000 R08: 0000557de0aaf280 R09: 0000000000000020
[   32.983046] R10: 00000000c0ed0000 R11: 0000000000000206 R12: 0000557de0ab7ce0
[   32.983494] R13: 0000557de0aaf260 R14: 0000000000000000 R15: 00000000ffffffff
[   32.984094]  </TASK>
[   32.984352] Modules linked in:
[   32.984753] CR2: ffff956a83c76067
[   32.985911] ---[ end trace 0000000000000000 ]---
[   32.986555] RIP: 0010:mi_enum_attr+0x44/0x110
[   32.987217] Code: 89 f0 48 29 c8 48 89 c1 39 c7 0f 86 94 00 00 00 8b 56 04 83 fa 17 0f 86 88 00 00 00 89 d0 01 ca 48 01 f0 8d 4a 08 39 f9a
[   32.988232] RSP: 0018:ffffba15c06a7c38 EFLAGS: 00000283
[   32.988532] RAX: ffff956a83c76067 RBX: ffff956983c76050 RCX: 000000000000006f
[   32.988916] RDX: 0000000000000067 RSI: ffff956983c760e8 RDI: 00000000000001c8
[   32.989356] RBP: ffffba15c06a7c38 R08: 0000000000000064 R09: 00000000ffffff7f
[   32.989994] R10: 0000000000000007 R11: ffff956983c760e8 R12: ffff95698225e000
[   32.990415] R13: 0000000000000000 R14: ffffba15c06a7cd8 R15: ffff95698225e170
[   32.991011] FS:  00007fdab8189e40(0000) GS:ffff9569fdc00000(0000) knlGS:0000000000000000
[   32.991524] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   32.991936] CR2: ffff956a83c76067 CR3: 0000000002c58000 CR4: 00000000000006f0

This patch adds an overflow check

Signed-off-by: edward lo <[email protected]>
Signed-off-by: Konstantin Komarov <[email protected]>
imaami pushed a commit to imaami/linux that referenced this pull request Dec 26, 2022
[ Upstream commit 93c660c ]

ASAN reports an use-after-free in btf_dump_name_dups:

ERROR: AddressSanitizer: heap-use-after-free on address 0xffff927006db at pc 0xaaaab5dfb618 bp 0xffffdd89b890 sp 0xffffdd89b928
READ of size 2 at 0xffff927006db thread T0
    #0 0xaaaab5dfb614 in __interceptor_strcmp.part.0 (test_progs+0x21b614)
    gregkh#1 0xaaaab635f144 in str_equal_fn tools/lib/bpf/btf_dump.c:127
    gregkh#2 0xaaaab635e3e0 in hashmap_find_entry tools/lib/bpf/hashmap.c:143
    gregkh#3 0xaaaab635e72c in hashmap__find tools/lib/bpf/hashmap.c:212
    gregkh#4 0xaaaab6362258 in btf_dump_name_dups tools/lib/bpf/btf_dump.c:1525
    gregkh#5 0xaaaab636240c in btf_dump_resolve_name tools/lib/bpf/btf_dump.c:1552
    gregkh#6 0xaaaab6362598 in btf_dump_type_name tools/lib/bpf/btf_dump.c:1567
    gregkh#7 0xaaaab6360b48 in btf_dump_emit_struct_def tools/lib/bpf/btf_dump.c:912
    gregkh#8 0xaaaab6360630 in btf_dump_emit_type tools/lib/bpf/btf_dump.c:798
    gregkh#9 0xaaaab635f720 in btf_dump__dump_type tools/lib/bpf/btf_dump.c:282
    gregkh#10 0xaaaab608523c in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:236
    gregkh#11 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    gregkh#12 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    gregkh#13 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    gregkh#14 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    gregkh#15 0xaaaab5d65990  (test_progs+0x185990)

0xffff927006db is located 11 bytes inside of 16-byte region [0xffff927006d0,0xffff927006e0)
freed by thread T0 here:
    #0 0xaaaab5e2c7c4 in realloc (test_progs+0x24c7c4)
    gregkh#1 0xaaaab634f4a0 in libbpf_reallocarray tools/lib/bpf/libbpf_internal.h:191
    gregkh#2 0xaaaab634f840 in libbpf_add_mem tools/lib/bpf/btf.c:163
    gregkh#3 0xaaaab636643c in strset_add_str_mem tools/lib/bpf/strset.c:106
    gregkh#4 0xaaaab6366560 in strset__add_str tools/lib/bpf/strset.c:157
    gregkh#5 0xaaaab6352d70 in btf__add_str tools/lib/bpf/btf.c:1519
    gregkh#6 0xaaaab6353e10 in btf__add_field tools/lib/bpf/btf.c:2032
    gregkh#7 0xaaaab6084fcc in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:232
    gregkh#8 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    gregkh#9 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    gregkh#10 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    gregkh#11 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    gregkh#12 0xaaaab5d65990  (test_progs+0x185990)

previously allocated by thread T0 here:
    #0 0xaaaab5e2c7c4 in realloc (test_progs+0x24c7c4)
    gregkh#1 0xaaaab634f4a0 in libbpf_reallocarray tools/lib/bpf/libbpf_internal.h:191
    gregkh#2 0xaaaab634f840 in libbpf_add_mem tools/lib/bpf/btf.c:163
    gregkh#3 0xaaaab636643c in strset_add_str_mem tools/lib/bpf/strset.c:106
    gregkh#4 0xaaaab6366560 in strset__add_str tools/lib/bpf/strset.c:157
    gregkh#5 0xaaaab6352d70 in btf__add_str tools/lib/bpf/btf.c:1519
    gregkh#6 0xaaaab6353ff0 in btf_add_enum_common tools/lib/bpf/btf.c:2070
    gregkh#7 0xaaaab6354080 in btf__add_enum tools/lib/bpf/btf.c:2102
    gregkh#8 0xaaaab6082f50 in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:162
    gregkh#9 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    gregkh#10 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    gregkh#11 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    gregkh#12 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    gregkh#13 0xaaaab5d65990  (test_progs+0x185990)

The reason is that the key stored in hash table name_map is a string
address, and the string memory is allocated by realloc() function, when
the memory is resized by realloc() later, the old memory may be freed,
so the address stored in name_map references to a freed memory, causing
use-after-free.

Fix it by storing duplicated string address in name_map.

Fixes: 919d2b1 ("libbpf: Allow modification of BTF and add btf__add_str API")
Signed-off-by: Xu Kuohai <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Martin KaFai Lau <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Signed-off-by: Sasha Levin <[email protected]>
imaami pushed a commit to imaami/linux that referenced this pull request Dec 26, 2022
[ Upstream commit cf2ea3c ]

I got a null-ptr-defer error report when I do the following tests
on the qemu platform:

make defconfig and CONFIG_PARPORT=m, CONFIG_PARPORT_PC=m,
CONFIG_SND_MTS64=m

Then making test scripts:
cat>test_mod1.sh<<EOF
modprobe snd-mts64
modprobe snd-mts64
EOF

Executing the script, perhaps several times, we will get a null-ptr-defer
report, as follow:

syzkaller:~# ./test_mod.sh
snd_mts64: probe of snd_mts64.0 failed with error -5
modprobe: ERROR: could not insert 'snd_mts64': No such device
 BUG: kernel NULL pointer dereference, address: 0000000000000000
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0002) - not-present page
 PGD 0 P4D 0
 Oops: 0002 [gregkh#1] PREEMPT SMP PTI
 CPU: 0 PID: 205 Comm: modprobe Not tainted 6.1.0-rc8-00588-g76dcd734eca2 gregkh#6
 Call Trace:
  <IRQ>
  snd_mts64_interrupt+0x24/0xa0 [snd_mts64]
  parport_irq_handler+0x37/0x50 [parport]
  __handle_irq_event_percpu+0x39/0x190
  handle_irq_event_percpu+0xa/0x30
  handle_irq_event+0x2f/0x50
  handle_edge_irq+0x99/0x1b0
  __common_interrupt+0x5d/0x100
  common_interrupt+0xa0/0xc0
  </IRQ>
  <TASK>
  asm_common_interrupt+0x22/0x40
 RIP: 0010:_raw_write_unlock_irqrestore+0x11/0x30
  parport_claim+0xbd/0x230 [parport]
  snd_mts64_probe+0x14a/0x465 [snd_mts64]
  platform_probe+0x3f/0xa0
  really_probe+0x129/0x2c0
  __driver_probe_device+0x6d/0xc0
  driver_probe_device+0x1a/0xa0
  __device_attach_driver+0x7a/0xb0
  bus_for_each_drv+0x62/0xb0
  __device_attach+0xe4/0x180
  bus_probe_device+0x82/0xa0
  device_add+0x550/0x920
  platform_device_add+0x106/0x220
  snd_mts64_attach+0x2e/0x80 [snd_mts64]
  port_check+0x14/0x20 [parport]
  bus_for_each_dev+0x6e/0xc0
  __parport_register_driver+0x7c/0xb0 [parport]
  snd_mts64_module_init+0x31/0x1000 [snd_mts64]
  do_one_initcall+0x3c/0x1f0
  do_init_module+0x46/0x1c6
  load_module+0x1d8d/0x1e10
  __do_sys_finit_module+0xa2/0xf0
  do_syscall_64+0x37/0x90
  entry_SYSCALL_64_after_hwframe+0x63/0xcd
  </TASK>
 Kernel panic - not syncing: Fatal exception in interrupt
 Rebooting in 1 seconds..

The mts wa not initialized during interrupt,  we add check for
mts to fix this bug.

Fixes: 68ab801 ("[ALSA] Add snd-mts64 driver for ESI Miditerminal 4140")
Signed-off-by: Gaosheng Cui <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Takashi Iwai <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
imaami pushed a commit to imaami/linux that referenced this pull request Dec 26, 2022
…g the sock

[ Upstream commit 3cf7203 ]

There is a race condition in vxlan that when deleting a vxlan device
during receiving packets, there is a possibility that the sock is
released after getting vxlan_sock vs from sk_user_data. Then in
later vxlan_ecn_decapsulate(), vxlan_get_sk_family() we will got
NULL pointer dereference. e.g.

   #0 [ffffa25ec6978a38] machine_kexec at ffffffff8c669757
   gregkh#1 [ffffa25ec6978a90] __crash_kexec at ffffffff8c7c0a4d
   gregkh#2 [ffffa25ec6978b58] crash_kexec at ffffffff8c7c1c48
   gregkh#3 [ffffa25ec6978b60] oops_end at ffffffff8c627f2b
   gregkh#4 [ffffa25ec6978b80] page_fault_oops at ffffffff8c678fcb
   gregkh#5 [ffffa25ec6978bd8] exc_page_fault at ffffffff8d109542
   gregkh#6 [ffffa25ec6978c00] asm_exc_page_fault at ffffffff8d200b62
      [exception RIP: vxlan_ecn_decapsulate+0x3b]
      RIP: ffffffffc1014e7b  RSP: ffffa25ec6978cb0  RFLAGS: 00010246
      RAX: 0000000000000008  RBX: ffff8aa000888000  RCX: 0000000000000000
      RDX: 000000000000000e  RSI: ffff8a9fc7ab803e  RDI: ffff8a9fd1168700
      RBP: ffff8a9fc7ab803e   R8: 0000000000700000   R9: 00000000000010ae
      R10: ffff8a9fcb748980  R11: 0000000000000000  R12: ffff8a9fd1168700
      R13: ffff8aa000888000  R14: 00000000002a0000  R15: 00000000000010ae
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   gregkh#7 [ffffa25ec6978ce8] vxlan_rcv at ffffffffc10189cd [vxlan]
   gregkh#8 [ffffa25ec6978d90] udp_queue_rcv_one_skb at ffffffff8cfb6507
   gregkh#9 [ffffa25ec6978dc0] udp_unicast_rcv_skb at ffffffff8cfb6e45
  gregkh#10 [ffffa25ec6978dc8] __udp4_lib_rcv at ffffffff8cfb8807
  gregkh#11 [ffffa25ec6978e20] ip_protocol_deliver_rcu at ffffffff8cf76951
  gregkh#12 [ffffa25ec6978e48] ip_local_deliver at ffffffff8cf76bde
  gregkh#13 [ffffa25ec6978ea0] __netif_receive_skb_one_core at ffffffff8cecde9b
  gregkh#14 [ffffa25ec6978ec8] process_backlog at ffffffff8cece139
  gregkh#15 [ffffa25ec6978f00] __napi_poll at ffffffff8ceced1a
  gregkh#16 [ffffa25ec6978f28] net_rx_action at ffffffff8cecf1f3
  gregkh#17 [ffffa25ec6978fa0] __softirqentry_text_start at ffffffff8d4000ca
  gregkh#18 [ffffa25ec6978ff0] do_softirq at ffffffff8c6fbdc3

Reproducer: https://github.com/Mellanox/ovs-tests/blob/master/test-ovs-vxlan-remove-tunnel-during-traffic.sh

Fix this by waiting for all sk_user_data reader to finish before
releasing the sock.

Reported-by: Jianlin Shi <[email protected]>
Suggested-by: Jakub Sitnicki <[email protected]>
Fixes: 6a93cc9 ("udp-tunnel: Add a few more UDP tunnel APIs")
Signed-off-by: Hangbin Liu <[email protected]>
Reviewed-by: Jiri Pirko <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
@sladewatkins
Copy link

added the macro sd_first_printk(). The macro takes "sdsk" as argument but dereferences "sdkp". This hasn't caused any real issues since all callers of sd_first_printk() have an sdkp. But fix the typo.

Signed-off-by: Li kunyu [email protected]

Please send this fix to [email protected] using the following documentation:
https://www.kernel.org/doc/html/v6.1/process/stable-kernel-rules.html

-- Slade

@gregkh gregkh closed this Dec 28, 2022
gregkh pushed a commit that referenced this pull request Dec 31, 2022
[ Upstream commit 93c660c ]

ASAN reports an use-after-free in btf_dump_name_dups:

ERROR: AddressSanitizer: heap-use-after-free on address 0xffff927006db at pc 0xaaaab5dfb618 bp 0xffffdd89b890 sp 0xffffdd89b928
READ of size 2 at 0xffff927006db thread T0
    #0 0xaaaab5dfb614 in __interceptor_strcmp.part.0 (test_progs+0x21b614)
    #1 0xaaaab635f144 in str_equal_fn tools/lib/bpf/btf_dump.c:127
    #2 0xaaaab635e3e0 in hashmap_find_entry tools/lib/bpf/hashmap.c:143
    #3 0xaaaab635e72c in hashmap__find tools/lib/bpf/hashmap.c:212
    #4 0xaaaab6362258 in btf_dump_name_dups tools/lib/bpf/btf_dump.c:1525
    #5 0xaaaab636240c in btf_dump_resolve_name tools/lib/bpf/btf_dump.c:1552
    #6 0xaaaab6362598 in btf_dump_type_name tools/lib/bpf/btf_dump.c:1567
    #7 0xaaaab6360b48 in btf_dump_emit_struct_def tools/lib/bpf/btf_dump.c:912
    #8 0xaaaab6360630 in btf_dump_emit_type tools/lib/bpf/btf_dump.c:798
    #9 0xaaaab635f720 in btf_dump__dump_type tools/lib/bpf/btf_dump.c:282
    #10 0xaaaab608523c in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:236
    #11 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #12 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #13 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #14 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #15 0xaaaab5d65990  (test_progs+0x185990)

0xffff927006db is located 11 bytes inside of 16-byte region [0xffff927006d0,0xffff927006e0)
freed by thread T0 here:
    #0 0xaaaab5e2c7c4 in realloc (test_progs+0x24c7c4)
    #1 0xaaaab634f4a0 in libbpf_reallocarray tools/lib/bpf/libbpf_internal.h:191
    #2 0xaaaab634f840 in libbpf_add_mem tools/lib/bpf/btf.c:163
    #3 0xaaaab636643c in strset_add_str_mem tools/lib/bpf/strset.c:106
    #4 0xaaaab6366560 in strset__add_str tools/lib/bpf/strset.c:157
    #5 0xaaaab6352d70 in btf__add_str tools/lib/bpf/btf.c:1519
    #6 0xaaaab6353e10 in btf__add_field tools/lib/bpf/btf.c:2032
    #7 0xaaaab6084fcc in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:232
    #8 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #9 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #10 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #11 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #12 0xaaaab5d65990  (test_progs+0x185990)

previously allocated by thread T0 here:
    #0 0xaaaab5e2c7c4 in realloc (test_progs+0x24c7c4)
    #1 0xaaaab634f4a0 in libbpf_reallocarray tools/lib/bpf/libbpf_internal.h:191
    #2 0xaaaab634f840 in libbpf_add_mem tools/lib/bpf/btf.c:163
    #3 0xaaaab636643c in strset_add_str_mem tools/lib/bpf/strset.c:106
    #4 0xaaaab6366560 in strset__add_str tools/lib/bpf/strset.c:157
    #5 0xaaaab6352d70 in btf__add_str tools/lib/bpf/btf.c:1519
    #6 0xaaaab6353ff0 in btf_add_enum_common tools/lib/bpf/btf.c:2070
    #7 0xaaaab6354080 in btf__add_enum tools/lib/bpf/btf.c:2102
    #8 0xaaaab6082f50 in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:162
    #9 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #10 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #11 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #12 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #13 0xaaaab5d65990  (test_progs+0x185990)

The reason is that the key stored in hash table name_map is a string
address, and the string memory is allocated by realloc() function, when
the memory is resized by realloc() later, the old memory may be freed,
so the address stored in name_map references to a freed memory, causing
use-after-free.

Fix it by storing duplicated string address in name_map.

Fixes: 919d2b1 ("libbpf: Allow modification of BTF and add btf__add_str API")
Signed-off-by: Xu Kuohai <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Martin KaFai Lau <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Dec 31, 2022
[ Upstream commit cf2ea3c ]

I got a null-ptr-defer error report when I do the following tests
on the qemu platform:

make defconfig and CONFIG_PARPORT=m, CONFIG_PARPORT_PC=m,
CONFIG_SND_MTS64=m

Then making test scripts:
cat>test_mod1.sh<<EOF
modprobe snd-mts64
modprobe snd-mts64
EOF

Executing the script, perhaps several times, we will get a null-ptr-defer
report, as follow:

syzkaller:~# ./test_mod.sh
snd_mts64: probe of snd_mts64.0 failed with error -5
modprobe: ERROR: could not insert 'snd_mts64': No such device
 BUG: kernel NULL pointer dereference, address: 0000000000000000
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0002) - not-present page
 PGD 0 P4D 0
 Oops: 0002 [#1] PREEMPT SMP PTI
 CPU: 0 PID: 205 Comm: modprobe Not tainted 6.1.0-rc8-00588-g76dcd734eca2 #6
 Call Trace:
  <IRQ>
  snd_mts64_interrupt+0x24/0xa0 [snd_mts64]
  parport_irq_handler+0x37/0x50 [parport]
  __handle_irq_event_percpu+0x39/0x190
  handle_irq_event_percpu+0xa/0x30
  handle_irq_event+0x2f/0x50
  handle_edge_irq+0x99/0x1b0
  __common_interrupt+0x5d/0x100
  common_interrupt+0xa0/0xc0
  </IRQ>
  <TASK>
  asm_common_interrupt+0x22/0x40
 RIP: 0010:_raw_write_unlock_irqrestore+0x11/0x30
  parport_claim+0xbd/0x230 [parport]
  snd_mts64_probe+0x14a/0x465 [snd_mts64]
  platform_probe+0x3f/0xa0
  really_probe+0x129/0x2c0
  __driver_probe_device+0x6d/0xc0
  driver_probe_device+0x1a/0xa0
  __device_attach_driver+0x7a/0xb0
  bus_for_each_drv+0x62/0xb0
  __device_attach+0xe4/0x180
  bus_probe_device+0x82/0xa0
  device_add+0x550/0x920
  platform_device_add+0x106/0x220
  snd_mts64_attach+0x2e/0x80 [snd_mts64]
  port_check+0x14/0x20 [parport]
  bus_for_each_dev+0x6e/0xc0
  __parport_register_driver+0x7c/0xb0 [parport]
  snd_mts64_module_init+0x31/0x1000 [snd_mts64]
  do_one_initcall+0x3c/0x1f0
  do_init_module+0x46/0x1c6
  load_module+0x1d8d/0x1e10
  __do_sys_finit_module+0xa2/0xf0
  do_syscall_64+0x37/0x90
  entry_SYSCALL_64_after_hwframe+0x63/0xcd
  </TASK>
 Kernel panic - not syncing: Fatal exception in interrupt
 Rebooting in 1 seconds..

The mts wa not initialized during interrupt,  we add check for
mts to fix this bug.

Fixes: 68ab801 ("[ALSA] Add snd-mts64 driver for ESI Miditerminal 4140")
Signed-off-by: Gaosheng Cui <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Takashi Iwai <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Dec 31, 2022
…g the sock

[ Upstream commit 3cf7203 ]

There is a race condition in vxlan that when deleting a vxlan device
during receiving packets, there is a possibility that the sock is
released after getting vxlan_sock vs from sk_user_data. Then in
later vxlan_ecn_decapsulate(), vxlan_get_sk_family() we will got
NULL pointer dereference. e.g.

   #0 [ffffa25ec6978a38] machine_kexec at ffffffff8c669757
   #1 [ffffa25ec6978a90] __crash_kexec at ffffffff8c7c0a4d
   #2 [ffffa25ec6978b58] crash_kexec at ffffffff8c7c1c48
   #3 [ffffa25ec6978b60] oops_end at ffffffff8c627f2b
   #4 [ffffa25ec6978b80] page_fault_oops at ffffffff8c678fcb
   #5 [ffffa25ec6978bd8] exc_page_fault at ffffffff8d109542
   #6 [ffffa25ec6978c00] asm_exc_page_fault at ffffffff8d200b62
      [exception RIP: vxlan_ecn_decapsulate+0x3b]
      RIP: ffffffffc1014e7b  RSP: ffffa25ec6978cb0  RFLAGS: 00010246
      RAX: 0000000000000008  RBX: ffff8aa000888000  RCX: 0000000000000000
      RDX: 000000000000000e  RSI: ffff8a9fc7ab803e  RDI: ffff8a9fd1168700
      RBP: ffff8a9fc7ab803e   R8: 0000000000700000   R9: 00000000000010ae
      R10: ffff8a9fcb748980  R11: 0000000000000000  R12: ffff8a9fd1168700
      R13: ffff8aa000888000  R14: 00000000002a0000  R15: 00000000000010ae
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   #7 [ffffa25ec6978ce8] vxlan_rcv at ffffffffc10189cd [vxlan]
   #8 [ffffa25ec6978d90] udp_queue_rcv_one_skb at ffffffff8cfb6507
   #9 [ffffa25ec6978dc0] udp_unicast_rcv_skb at ffffffff8cfb6e45
  #10 [ffffa25ec6978dc8] __udp4_lib_rcv at ffffffff8cfb8807
  #11 [ffffa25ec6978e20] ip_protocol_deliver_rcu at ffffffff8cf76951
  #12 [ffffa25ec6978e48] ip_local_deliver at ffffffff8cf76bde
  #13 [ffffa25ec6978ea0] __netif_receive_skb_one_core at ffffffff8cecde9b
  #14 [ffffa25ec6978ec8] process_backlog at ffffffff8cece139
  #15 [ffffa25ec6978f00] __napi_poll at ffffffff8ceced1a
  #16 [ffffa25ec6978f28] net_rx_action at ffffffff8cecf1f3
  #17 [ffffa25ec6978fa0] __softirqentry_text_start at ffffffff8d4000ca
  #18 [ffffa25ec6978ff0] do_softirq at ffffffff8c6fbdc3

Reproducer: https://github.com/Mellanox/ovs-tests/blob/master/test-ovs-vxlan-remove-tunnel-during-traffic.sh

Fix this by waiting for all sk_user_data reader to finish before
releasing the sock.

Reported-by: Jianlin Shi <[email protected]>
Suggested-by: Jakub Sitnicki <[email protected]>
Fixes: 6a93cc9 ("udp-tunnel: Add a few more UDP tunnel APIs")
Signed-off-by: Hangbin Liu <[email protected]>
Reviewed-by: Jiri Pirko <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Dec 31, 2022
[ Upstream commit 93c660c ]

ASAN reports an use-after-free in btf_dump_name_dups:

ERROR: AddressSanitizer: heap-use-after-free on address 0xffff927006db at pc 0xaaaab5dfb618 bp 0xffffdd89b890 sp 0xffffdd89b928
READ of size 2 at 0xffff927006db thread T0
    #0 0xaaaab5dfb614 in __interceptor_strcmp.part.0 (test_progs+0x21b614)
    #1 0xaaaab635f144 in str_equal_fn tools/lib/bpf/btf_dump.c:127
    #2 0xaaaab635e3e0 in hashmap_find_entry tools/lib/bpf/hashmap.c:143
    #3 0xaaaab635e72c in hashmap__find tools/lib/bpf/hashmap.c:212
    #4 0xaaaab6362258 in btf_dump_name_dups tools/lib/bpf/btf_dump.c:1525
    #5 0xaaaab636240c in btf_dump_resolve_name tools/lib/bpf/btf_dump.c:1552
    #6 0xaaaab6362598 in btf_dump_type_name tools/lib/bpf/btf_dump.c:1567
    #7 0xaaaab6360b48 in btf_dump_emit_struct_def tools/lib/bpf/btf_dump.c:912
    #8 0xaaaab6360630 in btf_dump_emit_type tools/lib/bpf/btf_dump.c:798
    #9 0xaaaab635f720 in btf_dump__dump_type tools/lib/bpf/btf_dump.c:282
    #10 0xaaaab608523c in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:236
    #11 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #12 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #13 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #14 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #15 0xaaaab5d65990  (test_progs+0x185990)

0xffff927006db is located 11 bytes inside of 16-byte region [0xffff927006d0,0xffff927006e0)
freed by thread T0 here:
    #0 0xaaaab5e2c7c4 in realloc (test_progs+0x24c7c4)
    #1 0xaaaab634f4a0 in libbpf_reallocarray tools/lib/bpf/libbpf_internal.h:191
    #2 0xaaaab634f840 in libbpf_add_mem tools/lib/bpf/btf.c:163
    #3 0xaaaab636643c in strset_add_str_mem tools/lib/bpf/strset.c:106
    #4 0xaaaab6366560 in strset__add_str tools/lib/bpf/strset.c:157
    #5 0xaaaab6352d70 in btf__add_str tools/lib/bpf/btf.c:1519
    #6 0xaaaab6353e10 in btf__add_field tools/lib/bpf/btf.c:2032
    #7 0xaaaab6084fcc in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:232
    #8 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #9 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #10 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #11 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #12 0xaaaab5d65990  (test_progs+0x185990)

previously allocated by thread T0 here:
    #0 0xaaaab5e2c7c4 in realloc (test_progs+0x24c7c4)
    #1 0xaaaab634f4a0 in libbpf_reallocarray tools/lib/bpf/libbpf_internal.h:191
    #2 0xaaaab634f840 in libbpf_add_mem tools/lib/bpf/btf.c:163
    #3 0xaaaab636643c in strset_add_str_mem tools/lib/bpf/strset.c:106
    #4 0xaaaab6366560 in strset__add_str tools/lib/bpf/strset.c:157
    #5 0xaaaab6352d70 in btf__add_str tools/lib/bpf/btf.c:1519
    #6 0xaaaab6353ff0 in btf_add_enum_common tools/lib/bpf/btf.c:2070
    #7 0xaaaab6354080 in btf__add_enum tools/lib/bpf/btf.c:2102
    #8 0xaaaab6082f50 in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:162
    #9 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #10 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #11 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #12 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #13 0xaaaab5d65990  (test_progs+0x185990)

The reason is that the key stored in hash table name_map is a string
address, and the string memory is allocated by realloc() function, when
the memory is resized by realloc() later, the old memory may be freed,
so the address stored in name_map references to a freed memory, causing
use-after-free.

Fix it by storing duplicated string address in name_map.

Fixes: 919d2b1 ("libbpf: Allow modification of BTF and add btf__add_str API")
Signed-off-by: Xu Kuohai <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Martin KaFai Lau <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Dec 31, 2022
[ Upstream commit cf2ea3c ]

I got a null-ptr-defer error report when I do the following tests
on the qemu platform:

make defconfig and CONFIG_PARPORT=m, CONFIG_PARPORT_PC=m,
CONFIG_SND_MTS64=m

Then making test scripts:
cat>test_mod1.sh<<EOF
modprobe snd-mts64
modprobe snd-mts64
EOF

Executing the script, perhaps several times, we will get a null-ptr-defer
report, as follow:

syzkaller:~# ./test_mod.sh
snd_mts64: probe of snd_mts64.0 failed with error -5
modprobe: ERROR: could not insert 'snd_mts64': No such device
 BUG: kernel NULL pointer dereference, address: 0000000000000000
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0002) - not-present page
 PGD 0 P4D 0
 Oops: 0002 [#1] PREEMPT SMP PTI
 CPU: 0 PID: 205 Comm: modprobe Not tainted 6.1.0-rc8-00588-g76dcd734eca2 #6
 Call Trace:
  <IRQ>
  snd_mts64_interrupt+0x24/0xa0 [snd_mts64]
  parport_irq_handler+0x37/0x50 [parport]
  __handle_irq_event_percpu+0x39/0x190
  handle_irq_event_percpu+0xa/0x30
  handle_irq_event+0x2f/0x50
  handle_edge_irq+0x99/0x1b0
  __common_interrupt+0x5d/0x100
  common_interrupt+0xa0/0xc0
  </IRQ>
  <TASK>
  asm_common_interrupt+0x22/0x40
 RIP: 0010:_raw_write_unlock_irqrestore+0x11/0x30
  parport_claim+0xbd/0x230 [parport]
  snd_mts64_probe+0x14a/0x465 [snd_mts64]
  platform_probe+0x3f/0xa0
  really_probe+0x129/0x2c0
  __driver_probe_device+0x6d/0xc0
  driver_probe_device+0x1a/0xa0
  __device_attach_driver+0x7a/0xb0
  bus_for_each_drv+0x62/0xb0
  __device_attach+0xe4/0x180
  bus_probe_device+0x82/0xa0
  device_add+0x550/0x920
  platform_device_add+0x106/0x220
  snd_mts64_attach+0x2e/0x80 [snd_mts64]
  port_check+0x14/0x20 [parport]
  bus_for_each_dev+0x6e/0xc0
  __parport_register_driver+0x7c/0xb0 [parport]
  snd_mts64_module_init+0x31/0x1000 [snd_mts64]
  do_one_initcall+0x3c/0x1f0
  do_init_module+0x46/0x1c6
  load_module+0x1d8d/0x1e10
  __do_sys_finit_module+0xa2/0xf0
  do_syscall_64+0x37/0x90
  entry_SYSCALL_64_after_hwframe+0x63/0xcd
  </TASK>
 Kernel panic - not syncing: Fatal exception in interrupt
 Rebooting in 1 seconds..

The mts wa not initialized during interrupt,  we add check for
mts to fix this bug.

Fixes: 68ab801 ("[ALSA] Add snd-mts64 driver for ESI Miditerminal 4140")
Signed-off-by: Gaosheng Cui <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Takashi Iwai <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Dec 31, 2022
…g the sock

[ Upstream commit 3cf7203 ]

There is a race condition in vxlan that when deleting a vxlan device
during receiving packets, there is a possibility that the sock is
released after getting vxlan_sock vs from sk_user_data. Then in
later vxlan_ecn_decapsulate(), vxlan_get_sk_family() we will got
NULL pointer dereference. e.g.

   #0 [ffffa25ec6978a38] machine_kexec at ffffffff8c669757
   #1 [ffffa25ec6978a90] __crash_kexec at ffffffff8c7c0a4d
   #2 [ffffa25ec6978b58] crash_kexec at ffffffff8c7c1c48
   #3 [ffffa25ec6978b60] oops_end at ffffffff8c627f2b
   #4 [ffffa25ec6978b80] page_fault_oops at ffffffff8c678fcb
   #5 [ffffa25ec6978bd8] exc_page_fault at ffffffff8d109542
   #6 [ffffa25ec6978c00] asm_exc_page_fault at ffffffff8d200b62
      [exception RIP: vxlan_ecn_decapsulate+0x3b]
      RIP: ffffffffc1014e7b  RSP: ffffa25ec6978cb0  RFLAGS: 00010246
      RAX: 0000000000000008  RBX: ffff8aa000888000  RCX: 0000000000000000
      RDX: 000000000000000e  RSI: ffff8a9fc7ab803e  RDI: ffff8a9fd1168700
      RBP: ffff8a9fc7ab803e   R8: 0000000000700000   R9: 00000000000010ae
      R10: ffff8a9fcb748980  R11: 0000000000000000  R12: ffff8a9fd1168700
      R13: ffff8aa000888000  R14: 00000000002a0000  R15: 00000000000010ae
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   #7 [ffffa25ec6978ce8] vxlan_rcv at ffffffffc10189cd [vxlan]
   #8 [ffffa25ec6978d90] udp_queue_rcv_one_skb at ffffffff8cfb6507
   #9 [ffffa25ec6978dc0] udp_unicast_rcv_skb at ffffffff8cfb6e45
  #10 [ffffa25ec6978dc8] __udp4_lib_rcv at ffffffff8cfb8807
  #11 [ffffa25ec6978e20] ip_protocol_deliver_rcu at ffffffff8cf76951
  #12 [ffffa25ec6978e48] ip_local_deliver at ffffffff8cf76bde
  #13 [ffffa25ec6978ea0] __netif_receive_skb_one_core at ffffffff8cecde9b
  #14 [ffffa25ec6978ec8] process_backlog at ffffffff8cece139
  #15 [ffffa25ec6978f00] __napi_poll at ffffffff8ceced1a
  #16 [ffffa25ec6978f28] net_rx_action at ffffffff8cecf1f3
  #17 [ffffa25ec6978fa0] __softirqentry_text_start at ffffffff8d4000ca
  #18 [ffffa25ec6978ff0] do_softirq at ffffffff8c6fbdc3

Reproducer: https://github.com/Mellanox/ovs-tests/blob/master/test-ovs-vxlan-remove-tunnel-during-traffic.sh

Fix this by waiting for all sk_user_data reader to finish before
releasing the sock.

Reported-by: Jianlin Shi <[email protected]>
Suggested-by: Jakub Sitnicki <[email protected]>
Fixes: 6a93cc9 ("udp-tunnel: Add a few more UDP tunnel APIs")
Signed-off-by: Hangbin Liu <[email protected]>
Reviewed-by: Jiri Pirko <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Dec 31, 2022
[ Upstream commit 93c660c ]

ASAN reports an use-after-free in btf_dump_name_dups:

ERROR: AddressSanitizer: heap-use-after-free on address 0xffff927006db at pc 0xaaaab5dfb618 bp 0xffffdd89b890 sp 0xffffdd89b928
READ of size 2 at 0xffff927006db thread T0
    #0 0xaaaab5dfb614 in __interceptor_strcmp.part.0 (test_progs+0x21b614)
    #1 0xaaaab635f144 in str_equal_fn tools/lib/bpf/btf_dump.c:127
    #2 0xaaaab635e3e0 in hashmap_find_entry tools/lib/bpf/hashmap.c:143
    #3 0xaaaab635e72c in hashmap__find tools/lib/bpf/hashmap.c:212
    #4 0xaaaab6362258 in btf_dump_name_dups tools/lib/bpf/btf_dump.c:1525
    #5 0xaaaab636240c in btf_dump_resolve_name tools/lib/bpf/btf_dump.c:1552
    #6 0xaaaab6362598 in btf_dump_type_name tools/lib/bpf/btf_dump.c:1567
    #7 0xaaaab6360b48 in btf_dump_emit_struct_def tools/lib/bpf/btf_dump.c:912
    #8 0xaaaab6360630 in btf_dump_emit_type tools/lib/bpf/btf_dump.c:798
    #9 0xaaaab635f720 in btf_dump__dump_type tools/lib/bpf/btf_dump.c:282
    #10 0xaaaab608523c in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:236
    #11 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #12 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #13 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #14 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #15 0xaaaab5d65990  (test_progs+0x185990)

0xffff927006db is located 11 bytes inside of 16-byte region [0xffff927006d0,0xffff927006e0)
freed by thread T0 here:
    #0 0xaaaab5e2c7c4 in realloc (test_progs+0x24c7c4)
    #1 0xaaaab634f4a0 in libbpf_reallocarray tools/lib/bpf/libbpf_internal.h:191
    #2 0xaaaab634f840 in libbpf_add_mem tools/lib/bpf/btf.c:163
    #3 0xaaaab636643c in strset_add_str_mem tools/lib/bpf/strset.c:106
    #4 0xaaaab6366560 in strset__add_str tools/lib/bpf/strset.c:157
    #5 0xaaaab6352d70 in btf__add_str tools/lib/bpf/btf.c:1519
    #6 0xaaaab6353e10 in btf__add_field tools/lib/bpf/btf.c:2032
    #7 0xaaaab6084fcc in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:232
    #8 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #9 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #10 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #11 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #12 0xaaaab5d65990  (test_progs+0x185990)

previously allocated by thread T0 here:
    #0 0xaaaab5e2c7c4 in realloc (test_progs+0x24c7c4)
    #1 0xaaaab634f4a0 in libbpf_reallocarray tools/lib/bpf/libbpf_internal.h:191
    #2 0xaaaab634f840 in libbpf_add_mem tools/lib/bpf/btf.c:163
    #3 0xaaaab636643c in strset_add_str_mem tools/lib/bpf/strset.c:106
    #4 0xaaaab6366560 in strset__add_str tools/lib/bpf/strset.c:157
    #5 0xaaaab6352d70 in btf__add_str tools/lib/bpf/btf.c:1519
    #6 0xaaaab6353ff0 in btf_add_enum_common tools/lib/bpf/btf.c:2070
    #7 0xaaaab6354080 in btf__add_enum tools/lib/bpf/btf.c:2102
    #8 0xaaaab6082f50 in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:162
    #9 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #10 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #11 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #12 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #13 0xaaaab5d65990  (test_progs+0x185990)

The reason is that the key stored in hash table name_map is a string
address, and the string memory is allocated by realloc() function, when
the memory is resized by realloc() later, the old memory may be freed,
so the address stored in name_map references to a freed memory, causing
use-after-free.

Fix it by storing duplicated string address in name_map.

Fixes: 919d2b1 ("libbpf: Allow modification of BTF and add btf__add_str API")
Signed-off-by: Xu Kuohai <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Martin KaFai Lau <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Dec 31, 2022
[ Upstream commit cf2ea3c ]

I got a null-ptr-defer error report when I do the following tests
on the qemu platform:

make defconfig and CONFIG_PARPORT=m, CONFIG_PARPORT_PC=m,
CONFIG_SND_MTS64=m

Then making test scripts:
cat>test_mod1.sh<<EOF
modprobe snd-mts64
modprobe snd-mts64
EOF

Executing the script, perhaps several times, we will get a null-ptr-defer
report, as follow:

syzkaller:~# ./test_mod.sh
snd_mts64: probe of snd_mts64.0 failed with error -5
modprobe: ERROR: could not insert 'snd_mts64': No such device
 BUG: kernel NULL pointer dereference, address: 0000000000000000
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0002) - not-present page
 PGD 0 P4D 0
 Oops: 0002 [#1] PREEMPT SMP PTI
 CPU: 0 PID: 205 Comm: modprobe Not tainted 6.1.0-rc8-00588-g76dcd734eca2 #6
 Call Trace:
  <IRQ>
  snd_mts64_interrupt+0x24/0xa0 [snd_mts64]
  parport_irq_handler+0x37/0x50 [parport]
  __handle_irq_event_percpu+0x39/0x190
  handle_irq_event_percpu+0xa/0x30
  handle_irq_event+0x2f/0x50
  handle_edge_irq+0x99/0x1b0
  __common_interrupt+0x5d/0x100
  common_interrupt+0xa0/0xc0
  </IRQ>
  <TASK>
  asm_common_interrupt+0x22/0x40
 RIP: 0010:_raw_write_unlock_irqrestore+0x11/0x30
  parport_claim+0xbd/0x230 [parport]
  snd_mts64_probe+0x14a/0x465 [snd_mts64]
  platform_probe+0x3f/0xa0
  really_probe+0x129/0x2c0
  __driver_probe_device+0x6d/0xc0
  driver_probe_device+0x1a/0xa0
  __device_attach_driver+0x7a/0xb0
  bus_for_each_drv+0x62/0xb0
  __device_attach+0xe4/0x180
  bus_probe_device+0x82/0xa0
  device_add+0x550/0x920
  platform_device_add+0x106/0x220
  snd_mts64_attach+0x2e/0x80 [snd_mts64]
  port_check+0x14/0x20 [parport]
  bus_for_each_dev+0x6e/0xc0
  __parport_register_driver+0x7c/0xb0 [parport]
  snd_mts64_module_init+0x31/0x1000 [snd_mts64]
  do_one_initcall+0x3c/0x1f0
  do_init_module+0x46/0x1c6
  load_module+0x1d8d/0x1e10
  __do_sys_finit_module+0xa2/0xf0
  do_syscall_64+0x37/0x90
  entry_SYSCALL_64_after_hwframe+0x63/0xcd
  </TASK>
 Kernel panic - not syncing: Fatal exception in interrupt
 Rebooting in 1 seconds..

The mts wa not initialized during interrupt,  we add check for
mts to fix this bug.

Fixes: 68ab801 ("[ALSA] Add snd-mts64 driver for ESI Miditerminal 4140")
Signed-off-by: Gaosheng Cui <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Takashi Iwai <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
[ Upstream commit 48918ca ]

The test starts a workload and then opens events. If the events fail
to open, for example because of perf_event_paranoid, the gopipe of the
workload is leaked and the file descriptor leak check fails when the
test exits. To avoid this cancel the workload when opening the events
fails.

Before:
```
$ perf test -vv 7
  7: PERF_RECORD_* events & perf_sample fields:
 --- start ---
test child forked, pid 1189568
Using CPUID GenuineIntel-6-B7-1
 ------------------------------------------------------------
perf_event_attr:
  type                    	   0 (PERF_TYPE_HARDWARE)
  config                  	   0xa00000000 (cpu_atom/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                	   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0xa00000000 (cpu_atom/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
  exclude_kernel                   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8 = 3
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0x400000000 (cpu_core/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0x400000000 (cpu_core/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
  exclude_kernel                   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8 = 3
Attempt to add: software/cpu-clock/
..after resolving event: software/config=0/
cpu-clock -> software/cpu-clock/
 ------------------------------------------------------------
perf_event_attr:
  type                             1 (PERF_TYPE_SOFTWARE)
  size                             136
  config                           0x9 (PERF_COUNT_SW_DUMMY)
  sample_type                      IP|TID|TIME|CPU
  read_format                      ID|LOST
  disabled                         1
  inherit                          1
  mmap                             1
  comm                             1
  enable_on_exec                   1
  task                             1
  sample_id_all                    1
  mmap2                            1
  comm_exec                        1
  ksymbol                          1
  bpf_event                        1
  { wakeup_events, wakeup_watermark } 1
 ------------------------------------------------------------
sys_perf_event_open: pid 1189569  cpu 0  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
perf_evlist__open: Permission denied
 ---- end(-2) ----
Leak of file descriptor 6 that opened: 'pipe:[14200347]'
 ---- unexpected signal (6) ----
iFailed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
    #0 0x565358f6666e in child_test_sig_handler builtin-test.c:311
    #1 0x7f29ce849df0 in __restore_rt libc_sigaction.c:0
    #2 0x7f29ce89e95c in __pthread_kill_implementation pthread_kill.c:44
    #3 0x7f29ce849cc2 in raise raise.c:27
    #4 0x7f29ce8324ac in abort abort.c:81
    #5 0x565358f662d4 in check_leaks builtin-test.c:226
    #6 0x565358f6682e in run_test_child builtin-test.c:344
    #7 0x565358ef7121 in start_command run-command.c:128
    #8 0x565358f67273 in start_test builtin-test.c:545
    #9 0x565358f6771d in __cmd_test builtin-test.c:647
    #10 0x565358f682bd in cmd_test builtin-test.c:849
    #11 0x565358ee5ded in run_builtin perf.c:349
    #12 0x565358ee6085 in handle_internal_command perf.c:401
    #13 0x565358ee61de in run_argv perf.c:448
    #14 0x565358ee6527 in main perf.c:555
    #15 0x7f29ce833ca8 in __libc_start_call_main libc_start_call_main.h:74
    #16 0x7f29ce833d65 in __libc_start_main@@GLIBC_2.34 libc-start.c:128
    #17 0x565358e391c1 in _start perf[851c1]
  7: PERF_RECORD_* events & perf_sample fields                       : FAILED!
```

After:
```
$ perf test 7
  7: PERF_RECORD_* events & perf_sample fields                       : Skip (permissions)
```

Fixes: 16d00fe ("perf tests: Move test__PERF_RECORD into separate object")
Signed-off-by: Ian Rogers <[email protected]>
Tested-by: Arnaldo Carvalho de Melo <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Athira Rajeev <[email protected]>
Cc: Chun-Tse Shao <[email protected]>
Cc: Howard Chu <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: James Clark <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Kan Liang <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
[ Upstream commit bbf0c98 ]

net/bridge/br_private.h:1627 suspicious rcu_dereference_protected() usage!
other info that might help us debug this:

rcu_scheduler_active = 2, debug_locks = 1
7 locks held by socat/410:
 #0: ffff88800d7a9c90 (sk_lock-AF_INET){+.+.}-{0:0}, at: inet_stream_connect+0x43/0xa0
 #1: ffffffff9a779900 (rcu_read_lock){....}-{1:3}, at: __ip_queue_xmit+0x62/0x1830
 [..]
 #6: ffffffff9a779900 (rcu_read_lock){....}-{1:3}, at: nf_hook.constprop.0+0x8a/0x440

Call Trace:
 lockdep_rcu_suspicious.cold+0x4f/0xb1
 br_vlan_fill_forward_path_pvid+0x32c/0x410 [bridge]
 br_fill_forward_path+0x7a/0x4d0 [bridge]

Use to correct helper, non _rcu variant requires RTNL mutex.

Fixes: bcf2766 ("net: bridge: resolve forwarding path for VLAN tag actions in bridge devices")
Signed-off-by: Eric Woudstra <[email protected]>
Signed-off-by: Florian Westphal <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
commit 0570327 upstream.

Before disabling SR-IOV via config space accesses to the parent PF,
sriov_disable() first removes the PCI devices representing the VFs.

Since commit 9d16947 ("PCI: Add global pci_lock_rescan_remove()")
such removal operations are serialized against concurrent remove and
rescan using the pci_rescan_remove_lock. No such locking was ever added
in sriov_disable() however. In particular when commit 18f9e9d
("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device
removal into sriov_del_vfs() there was still no locking around the
pci_iov_remove_virtfn() calls.

On s390 the lack of serialization in sriov_disable() may cause double
remove and list corruption with the below (amended) trace being observed:

  PSW:  0704c00180000000 0000000c914e4b38 (klist_put+56)
  GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001
	00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480
	0000000000000001 0000000000000000 0000000000000000 0000000180692828
	00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8
  #0 [3800313fb20] device_del at c9158ad5c
  #1 [3800313fb88] pci_remove_bus_device at c915105ba
  #2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198
  #3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0
  #4 [3800313fc60] zpci_bus_remove_device at c90fb6104
  #5 [3800313fca0] __zpci_event_availability at c90fb3dca
  #6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2
  #7 [3800313fd60] crw_collect_info at c91905822
  #8 [3800313fe10] kthread at c90feb390
  #9 [3800313fe68] __ret_from_fork at c90f6aa64
  #10 [3800313fe98] ret_from_fork at c9194f3f2.

This is because in addition to sriov_disable() removing the VFs, the
platform also generates hot-unplug events for the VFs. This being the
reverse operation to the hotplug events generated by sriov_enable() and
handled via pdev->no_vf_scan. And while the event processing takes
pci_rescan_remove_lock and checks whether the struct pci_dev still exists,
the lack of synchronization makes this checking racy.

Other races may also be possible of course though given that this lack of
locking persisted so long observable races seem very rare. Even on s390 the
list corruption was only observed with certain devices since the platform
events are only triggered by config accesses after the removal, so as long
as the removal finished synchronously they would not race. Either way the
locking is missing so fix this by adding it to the sriov_del_vfs() helper.

Just like PCI rescan-remove, locking is also missing in sriov_add_vfs()
including for the error case where pci_stop_and_remove_bus_device() is
called without the PCI rescan-remove lock being held. Even in the non-error
case, adding new PCI devices and buses should be serialized via the PCI
rescan-remove lock. Add the necessary locking.

Fixes: 18f9e9d ("PCI/IOV: Factor out sriov_add_vfs()")
Signed-off-by: Niklas Schnelle <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
Reviewed-by: Benjamin Block <[email protected]>
Reviewed-by: Farhan Ali <[email protected]>
Reviewed-by: Julian Ruess <[email protected]>
Cc: [email protected]
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
commit 130e6de upstream.

The block layer validates buffer alignment using the device's
dma_alignment value. If dma_alignment is smaller than
logical_block_size(bp_block) -1, misaligned buffer incorrectly pass
validation and propagate to the lower-level driver.

This patch adjusts dma_alignment to be at least logical_block_size -1,
ensuring that misalignment buffers are properly rejected at the block
layer and do not reach the DASD driver unnecessarily.

Fixes: 2a07bb6 ("s390/dasd: Remove DMA alignment")
Reviewed-by: Stefan Haberland <[email protected]>
Cc: [email protected] #6.11+
Signed-off-by: Jaehoon Kim <[email protected]>
Signed-off-by: Stefan Haberland <[email protected]>
Signed-off-by: Jens Axboe <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
commit 8f4ed0c upstream.

Currently, if CCW request creation fails with -EINVAL, the DASD driver
returns BLK_STS_IOERR to the block layer.

This can happen, for example, when a user-space application such as QEMU
passes a misaligned buffer, but the original cause of the error is
masked as a generic I/O error.

This patch changes the behavior so that -EINVAL is returned as
BLK_STS_INVAL, allowing user space to properly detect alignment issues
instead of interpreting them as I/O errors.

Reviewed-by: Stefan Haberland <[email protected]>
Cc: [email protected] #6.11+
Signed-off-by: Jaehoon Kim <[email protected]>
Signed-off-by: Stefan Haberland <[email protected]>
Signed-off-by: Jens Axboe <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
[ Upstream commit 48918ca ]

The test starts a workload and then opens events. If the events fail
to open, for example because of perf_event_paranoid, the gopipe of the
workload is leaked and the file descriptor leak check fails when the
test exits. To avoid this cancel the workload when opening the events
fails.

Before:
```
$ perf test -vv 7
  7: PERF_RECORD_* events & perf_sample fields:
 --- start ---
test child forked, pid 1189568
Using CPUID GenuineIntel-6-B7-1
 ------------------------------------------------------------
perf_event_attr:
  type                    	   0 (PERF_TYPE_HARDWARE)
  config                  	   0xa00000000 (cpu_atom/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                	   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0xa00000000 (cpu_atom/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
  exclude_kernel                   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8 = 3
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0x400000000 (cpu_core/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0x400000000 (cpu_core/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
  exclude_kernel                   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8 = 3
Attempt to add: software/cpu-clock/
..after resolving event: software/config=0/
cpu-clock -> software/cpu-clock/
 ------------------------------------------------------------
perf_event_attr:
  type                             1 (PERF_TYPE_SOFTWARE)
  size                             136
  config                           0x9 (PERF_COUNT_SW_DUMMY)
  sample_type                      IP|TID|TIME|CPU
  read_format                      ID|LOST
  disabled                         1
  inherit                          1
  mmap                             1
  comm                             1
  enable_on_exec                   1
  task                             1
  sample_id_all                    1
  mmap2                            1
  comm_exec                        1
  ksymbol                          1
  bpf_event                        1
  { wakeup_events, wakeup_watermark } 1
 ------------------------------------------------------------
sys_perf_event_open: pid 1189569  cpu 0  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
perf_evlist__open: Permission denied
 ---- end(-2) ----
Leak of file descriptor 6 that opened: 'pipe:[14200347]'
 ---- unexpected signal (6) ----
iFailed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
    #0 0x565358f6666e in child_test_sig_handler builtin-test.c:311
    #1 0x7f29ce849df0 in __restore_rt libc_sigaction.c:0
    #2 0x7f29ce89e95c in __pthread_kill_implementation pthread_kill.c:44
    #3 0x7f29ce849cc2 in raise raise.c:27
    #4 0x7f29ce8324ac in abort abort.c:81
    #5 0x565358f662d4 in check_leaks builtin-test.c:226
    #6 0x565358f6682e in run_test_child builtin-test.c:344
    #7 0x565358ef7121 in start_command run-command.c:128
    #8 0x565358f67273 in start_test builtin-test.c:545
    #9 0x565358f6771d in __cmd_test builtin-test.c:647
    #10 0x565358f682bd in cmd_test builtin-test.c:849
    #11 0x565358ee5ded in run_builtin perf.c:349
    #12 0x565358ee6085 in handle_internal_command perf.c:401
    #13 0x565358ee61de in run_argv perf.c:448
    #14 0x565358ee6527 in main perf.c:555
    #15 0x7f29ce833ca8 in __libc_start_call_main libc_start_call_main.h:74
    #16 0x7f29ce833d65 in __libc_start_main@@GLIBC_2.34 libc-start.c:128
    #17 0x565358e391c1 in _start perf[851c1]
  7: PERF_RECORD_* events & perf_sample fields                       : FAILED!
```

After:
```
$ perf test 7
  7: PERF_RECORD_* events & perf_sample fields                       : Skip (permissions)
```

Fixes: 16d00fe ("perf tests: Move test__PERF_RECORD into separate object")
Signed-off-by: Ian Rogers <[email protected]>
Tested-by: Arnaldo Carvalho de Melo <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Athira Rajeev <[email protected]>
Cc: Chun-Tse Shao <[email protected]>
Cc: Howard Chu <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: James Clark <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Kan Liang <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
[ Upstream commit bbf0c98 ]

net/bridge/br_private.h:1627 suspicious rcu_dereference_protected() usage!
other info that might help us debug this:

rcu_scheduler_active = 2, debug_locks = 1
7 locks held by socat/410:
 #0: ffff88800d7a9c90 (sk_lock-AF_INET){+.+.}-{0:0}, at: inet_stream_connect+0x43/0xa0
 #1: ffffffff9a779900 (rcu_read_lock){....}-{1:3}, at: __ip_queue_xmit+0x62/0x1830
 [..]
 #6: ffffffff9a779900 (rcu_read_lock){....}-{1:3}, at: nf_hook.constprop.0+0x8a/0x440

Call Trace:
 lockdep_rcu_suspicious.cold+0x4f/0xb1
 br_vlan_fill_forward_path_pvid+0x32c/0x410 [bridge]
 br_fill_forward_path+0x7a/0x4d0 [bridge]

Use to correct helper, non _rcu variant requires RTNL mutex.

Fixes: bcf2766 ("net: bridge: resolve forwarding path for VLAN tag actions in bridge devices")
Signed-off-by: Eric Woudstra <[email protected]>
Signed-off-by: Florian Westphal <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
commit 0570327 upstream.

Before disabling SR-IOV via config space accesses to the parent PF,
sriov_disable() first removes the PCI devices representing the VFs.

Since commit 9d16947 ("PCI: Add global pci_lock_rescan_remove()")
such removal operations are serialized against concurrent remove and
rescan using the pci_rescan_remove_lock. No such locking was ever added
in sriov_disable() however. In particular when commit 18f9e9d
("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device
removal into sriov_del_vfs() there was still no locking around the
pci_iov_remove_virtfn() calls.

On s390 the lack of serialization in sriov_disable() may cause double
remove and list corruption with the below (amended) trace being observed:

  PSW:  0704c00180000000 0000000c914e4b38 (klist_put+56)
  GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001
	00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480
	0000000000000001 0000000000000000 0000000000000000 0000000180692828
	00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8
  #0 [3800313fb20] device_del at c9158ad5c
  #1 [3800313fb88] pci_remove_bus_device at c915105ba
  #2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198
  #3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0
  #4 [3800313fc60] zpci_bus_remove_device at c90fb6104
  #5 [3800313fca0] __zpci_event_availability at c90fb3dca
  #6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2
  #7 [3800313fd60] crw_collect_info at c91905822
  #8 [3800313fe10] kthread at c90feb390
  #9 [3800313fe68] __ret_from_fork at c90f6aa64
  #10 [3800313fe98] ret_from_fork at c9194f3f2.

This is because in addition to sriov_disable() removing the VFs, the
platform also generates hot-unplug events for the VFs. This being the
reverse operation to the hotplug events generated by sriov_enable() and
handled via pdev->no_vf_scan. And while the event processing takes
pci_rescan_remove_lock and checks whether the struct pci_dev still exists,
the lack of synchronization makes this checking racy.

Other races may also be possible of course though given that this lack of
locking persisted so long observable races seem very rare. Even on s390 the
list corruption was only observed with certain devices since the platform
events are only triggered by config accesses after the removal, so as long
as the removal finished synchronously they would not race. Either way the
locking is missing so fix this by adding it to the sriov_del_vfs() helper.

Just like PCI rescan-remove, locking is also missing in sriov_add_vfs()
including for the error case where pci_stop_and_remove_bus_device() is
called without the PCI rescan-remove lock being held. Even in the non-error
case, adding new PCI devices and buses should be serialized via the PCI
rescan-remove lock. Add the necessary locking.

Fixes: 18f9e9d ("PCI/IOV: Factor out sriov_add_vfs()")
Signed-off-by: Niklas Schnelle <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
Reviewed-by: Benjamin Block <[email protected]>
Reviewed-by: Farhan Ali <[email protected]>
Reviewed-by: Julian Ruess <[email protected]>
Cc: [email protected]
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
[ Upstream commit 48918ca ]

The test starts a workload and then opens events. If the events fail
to open, for example because of perf_event_paranoid, the gopipe of the
workload is leaked and the file descriptor leak check fails when the
test exits. To avoid this cancel the workload when opening the events
fails.

Before:
```
$ perf test -vv 7
  7: PERF_RECORD_* events & perf_sample fields:
 --- start ---
test child forked, pid 1189568
Using CPUID GenuineIntel-6-B7-1
 ------------------------------------------------------------
perf_event_attr:
  type                    	   0 (PERF_TYPE_HARDWARE)
  config                  	   0xa00000000 (cpu_atom/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                	   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0xa00000000 (cpu_atom/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
  exclude_kernel                   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8 = 3
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0x400000000 (cpu_core/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0x400000000 (cpu_core/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
  exclude_kernel                   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8 = 3
Attempt to add: software/cpu-clock/
..after resolving event: software/config=0/
cpu-clock -> software/cpu-clock/
 ------------------------------------------------------------
perf_event_attr:
  type                             1 (PERF_TYPE_SOFTWARE)
  size                             136
  config                           0x9 (PERF_COUNT_SW_DUMMY)
  sample_type                      IP|TID|TIME|CPU
  read_format                      ID|LOST
  disabled                         1
  inherit                          1
  mmap                             1
  comm                             1
  enable_on_exec                   1
  task                             1
  sample_id_all                    1
  mmap2                            1
  comm_exec                        1
  ksymbol                          1
  bpf_event                        1
  { wakeup_events, wakeup_watermark } 1
 ------------------------------------------------------------
sys_perf_event_open: pid 1189569  cpu 0  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
perf_evlist__open: Permission denied
 ---- end(-2) ----
Leak of file descriptor 6 that opened: 'pipe:[14200347]'
 ---- unexpected signal (6) ----
iFailed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
    #0 0x565358f6666e in child_test_sig_handler builtin-test.c:311
    #1 0x7f29ce849df0 in __restore_rt libc_sigaction.c:0
    #2 0x7f29ce89e95c in __pthread_kill_implementation pthread_kill.c:44
    #3 0x7f29ce849cc2 in raise raise.c:27
    #4 0x7f29ce8324ac in abort abort.c:81
    #5 0x565358f662d4 in check_leaks builtin-test.c:226
    #6 0x565358f6682e in run_test_child builtin-test.c:344
    #7 0x565358ef7121 in start_command run-command.c:128
    #8 0x565358f67273 in start_test builtin-test.c:545
    #9 0x565358f6771d in __cmd_test builtin-test.c:647
    #10 0x565358f682bd in cmd_test builtin-test.c:849
    #11 0x565358ee5ded in run_builtin perf.c:349
    #12 0x565358ee6085 in handle_internal_command perf.c:401
    #13 0x565358ee61de in run_argv perf.c:448
    #14 0x565358ee6527 in main perf.c:555
    #15 0x7f29ce833ca8 in __libc_start_call_main libc_start_call_main.h:74
    #16 0x7f29ce833d65 in __libc_start_main@@GLIBC_2.34 libc-start.c:128
    #17 0x565358e391c1 in _start perf[851c1]
  7: PERF_RECORD_* events & perf_sample fields                       : FAILED!
```

After:
```
$ perf test 7
  7: PERF_RECORD_* events & perf_sample fields                       : Skip (permissions)
```

Fixes: 16d00fe ("perf tests: Move test__PERF_RECORD into separate object")
Signed-off-by: Ian Rogers <[email protected]>
Tested-by: Arnaldo Carvalho de Melo <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Athira Rajeev <[email protected]>
Cc: Chun-Tse Shao <[email protected]>
Cc: Howard Chu <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: James Clark <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Kan Liang <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
[ Upstream commit bbf0c98 ]

net/bridge/br_private.h:1627 suspicious rcu_dereference_protected() usage!
other info that might help us debug this:

rcu_scheduler_active = 2, debug_locks = 1
7 locks held by socat/410:
 #0: ffff88800d7a9c90 (sk_lock-AF_INET){+.+.}-{0:0}, at: inet_stream_connect+0x43/0xa0
 #1: ffffffff9a779900 (rcu_read_lock){....}-{1:3}, at: __ip_queue_xmit+0x62/0x1830
 [..]
 #6: ffffffff9a779900 (rcu_read_lock){....}-{1:3}, at: nf_hook.constprop.0+0x8a/0x440

Call Trace:
 lockdep_rcu_suspicious.cold+0x4f/0xb1
 br_vlan_fill_forward_path_pvid+0x32c/0x410 [bridge]
 br_fill_forward_path+0x7a/0x4d0 [bridge]

Use to correct helper, non _rcu variant requires RTNL mutex.

Fixes: bcf2766 ("net: bridge: resolve forwarding path for VLAN tag actions in bridge devices")
Signed-off-by: Eric Woudstra <[email protected]>
Signed-off-by: Florian Westphal <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
commit 0570327 upstream.

Before disabling SR-IOV via config space accesses to the parent PF,
sriov_disable() first removes the PCI devices representing the VFs.

Since commit 9d16947 ("PCI: Add global pci_lock_rescan_remove()")
such removal operations are serialized against concurrent remove and
rescan using the pci_rescan_remove_lock. No such locking was ever added
in sriov_disable() however. In particular when commit 18f9e9d
("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device
removal into sriov_del_vfs() there was still no locking around the
pci_iov_remove_virtfn() calls.

On s390 the lack of serialization in sriov_disable() may cause double
remove and list corruption with the below (amended) trace being observed:

  PSW:  0704c00180000000 0000000c914e4b38 (klist_put+56)
  GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001
	00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480
	0000000000000001 0000000000000000 0000000000000000 0000000180692828
	00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8
  #0 [3800313fb20] device_del at c9158ad5c
  #1 [3800313fb88] pci_remove_bus_device at c915105ba
  #2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198
  #3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0
  #4 [3800313fc60] zpci_bus_remove_device at c90fb6104
  #5 [3800313fca0] __zpci_event_availability at c90fb3dca
  #6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2
  #7 [3800313fd60] crw_collect_info at c91905822
  #8 [3800313fe10] kthread at c90feb390
  #9 [3800313fe68] __ret_from_fork at c90f6aa64
  #10 [3800313fe98] ret_from_fork at c9194f3f2.

This is because in addition to sriov_disable() removing the VFs, the
platform also generates hot-unplug events for the VFs. This being the
reverse operation to the hotplug events generated by sriov_enable() and
handled via pdev->no_vf_scan. And while the event processing takes
pci_rescan_remove_lock and checks whether the struct pci_dev still exists,
the lack of synchronization makes this checking racy.

Other races may also be possible of course though given that this lack of
locking persisted so long observable races seem very rare. Even on s390 the
list corruption was only observed with certain devices since the platform
events are only triggered by config accesses after the removal, so as long
as the removal finished synchronously they would not race. Either way the
locking is missing so fix this by adding it to the sriov_del_vfs() helper.

Just like PCI rescan-remove, locking is also missing in sriov_add_vfs()
including for the error case where pci_stop_and_remove_bus_device() is
called without the PCI rescan-remove lock being held. Even in the non-error
case, adding new PCI devices and buses should be serialized via the PCI
rescan-remove lock. Add the necessary locking.

Fixes: 18f9e9d ("PCI/IOV: Factor out sriov_add_vfs()")
Signed-off-by: Niklas Schnelle <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
Reviewed-by: Benjamin Block <[email protected]>
Reviewed-by: Farhan Ali <[email protected]>
Reviewed-by: Julian Ruess <[email protected]>
Cc: [email protected]
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
[ Upstream commit 48918ca ]

The test starts a workload and then opens events. If the events fail
to open, for example because of perf_event_paranoid, the gopipe of the
workload is leaked and the file descriptor leak check fails when the
test exits. To avoid this cancel the workload when opening the events
fails.

Before:
```
$ perf test -vv 7
  7: PERF_RECORD_* events & perf_sample fields:
 --- start ---
test child forked, pid 1189568
Using CPUID GenuineIntel-6-B7-1
 ------------------------------------------------------------
perf_event_attr:
  type                    	   0 (PERF_TYPE_HARDWARE)
  config                  	   0xa00000000 (cpu_atom/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                	   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0xa00000000 (cpu_atom/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
  exclude_kernel                   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8 = 3
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0x400000000 (cpu_core/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0x400000000 (cpu_core/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
  exclude_kernel                   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8 = 3
Attempt to add: software/cpu-clock/
..after resolving event: software/config=0/
cpu-clock -> software/cpu-clock/
 ------------------------------------------------------------
perf_event_attr:
  type                             1 (PERF_TYPE_SOFTWARE)
  size                             136
  config                           0x9 (PERF_COUNT_SW_DUMMY)
  sample_type                      IP|TID|TIME|CPU
  read_format                      ID|LOST
  disabled                         1
  inherit                          1
  mmap                             1
  comm                             1
  enable_on_exec                   1
  task                             1
  sample_id_all                    1
  mmap2                            1
  comm_exec                        1
  ksymbol                          1
  bpf_event                        1
  { wakeup_events, wakeup_watermark } 1
 ------------------------------------------------------------
sys_perf_event_open: pid 1189569  cpu 0  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
perf_evlist__open: Permission denied
 ---- end(-2) ----
Leak of file descriptor 6 that opened: 'pipe:[14200347]'
 ---- unexpected signal (6) ----
iFailed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
    #0 0x565358f6666e in child_test_sig_handler builtin-test.c:311
    #1 0x7f29ce849df0 in __restore_rt libc_sigaction.c:0
    #2 0x7f29ce89e95c in __pthread_kill_implementation pthread_kill.c:44
    #3 0x7f29ce849cc2 in raise raise.c:27
    #4 0x7f29ce8324ac in abort abort.c:81
    #5 0x565358f662d4 in check_leaks builtin-test.c:226
    #6 0x565358f6682e in run_test_child builtin-test.c:344
    #7 0x565358ef7121 in start_command run-command.c:128
    #8 0x565358f67273 in start_test builtin-test.c:545
    #9 0x565358f6771d in __cmd_test builtin-test.c:647
    #10 0x565358f682bd in cmd_test builtin-test.c:849
    #11 0x565358ee5ded in run_builtin perf.c:349
    #12 0x565358ee6085 in handle_internal_command perf.c:401
    #13 0x565358ee61de in run_argv perf.c:448
    #14 0x565358ee6527 in main perf.c:555
    #15 0x7f29ce833ca8 in __libc_start_call_main libc_start_call_main.h:74
    #16 0x7f29ce833d65 in __libc_start_main@@GLIBC_2.34 libc-start.c:128
    #17 0x565358e391c1 in _start perf[851c1]
  7: PERF_RECORD_* events & perf_sample fields                       : FAILED!
```

After:
```
$ perf test 7
  7: PERF_RECORD_* events & perf_sample fields                       : Skip (permissions)
```

Fixes: 16d00fe ("perf tests: Move test__PERF_RECORD into separate object")
Signed-off-by: Ian Rogers <[email protected]>
Tested-by: Arnaldo Carvalho de Melo <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Athira Rajeev <[email protected]>
Cc: Chun-Tse Shao <[email protected]>
Cc: Howard Chu <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: James Clark <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Kan Liang <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
[ Upstream commit bbf0c98 ]

net/bridge/br_private.h:1627 suspicious rcu_dereference_protected() usage!
other info that might help us debug this:

rcu_scheduler_active = 2, debug_locks = 1
7 locks held by socat/410:
 #0: ffff88800d7a9c90 (sk_lock-AF_INET){+.+.}-{0:0}, at: inet_stream_connect+0x43/0xa0
 #1: ffffffff9a779900 (rcu_read_lock){....}-{1:3}, at: __ip_queue_xmit+0x62/0x1830
 [..]
 #6: ffffffff9a779900 (rcu_read_lock){....}-{1:3}, at: nf_hook.constprop.0+0x8a/0x440

Call Trace:
 lockdep_rcu_suspicious.cold+0x4f/0xb1
 br_vlan_fill_forward_path_pvid+0x32c/0x410 [bridge]
 br_fill_forward_path+0x7a/0x4d0 [bridge]

Use to correct helper, non _rcu variant requires RTNL mutex.

Fixes: bcf2766 ("net: bridge: resolve forwarding path for VLAN tag actions in bridge devices")
Signed-off-by: Eric Woudstra <[email protected]>
Signed-off-by: Florian Westphal <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
commit 0570327 upstream.

Before disabling SR-IOV via config space accesses to the parent PF,
sriov_disable() first removes the PCI devices representing the VFs.

Since commit 9d16947 ("PCI: Add global pci_lock_rescan_remove()")
such removal operations are serialized against concurrent remove and
rescan using the pci_rescan_remove_lock. No such locking was ever added
in sriov_disable() however. In particular when commit 18f9e9d
("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device
removal into sriov_del_vfs() there was still no locking around the
pci_iov_remove_virtfn() calls.

On s390 the lack of serialization in sriov_disable() may cause double
remove and list corruption with the below (amended) trace being observed:

  PSW:  0704c00180000000 0000000c914e4b38 (klist_put+56)
  GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001
	00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480
	0000000000000001 0000000000000000 0000000000000000 0000000180692828
	00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8
  #0 [3800313fb20] device_del at c9158ad5c
  #1 [3800313fb88] pci_remove_bus_device at c915105ba
  #2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198
  #3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0
  #4 [3800313fc60] zpci_bus_remove_device at c90fb6104
  #5 [3800313fca0] __zpci_event_availability at c90fb3dca
  #6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2
  #7 [3800313fd60] crw_collect_info at c91905822
  #8 [3800313fe10] kthread at c90feb390
  #9 [3800313fe68] __ret_from_fork at c90f6aa64
  #10 [3800313fe98] ret_from_fork at c9194f3f2.

This is because in addition to sriov_disable() removing the VFs, the
platform also generates hot-unplug events for the VFs. This being the
reverse operation to the hotplug events generated by sriov_enable() and
handled via pdev->no_vf_scan. And while the event processing takes
pci_rescan_remove_lock and checks whether the struct pci_dev still exists,
the lack of synchronization makes this checking racy.

Other races may also be possible of course though given that this lack of
locking persisted so long observable races seem very rare. Even on s390 the
list corruption was only observed with certain devices since the platform
events are only triggered by config accesses after the removal, so as long
as the removal finished synchronously they would not race. Either way the
locking is missing so fix this by adding it to the sriov_del_vfs() helper.

Just like PCI rescan-remove, locking is also missing in sriov_add_vfs()
including for the error case where pci_stop_and_remove_bus_device() is
called without the PCI rescan-remove lock being held. Even in the non-error
case, adding new PCI devices and buses should be serialized via the PCI
rescan-remove lock. Add the necessary locking.

Fixes: 18f9e9d ("PCI/IOV: Factor out sriov_add_vfs()")
Signed-off-by: Niklas Schnelle <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
Reviewed-by: Benjamin Block <[email protected]>
Reviewed-by: Farhan Ali <[email protected]>
Reviewed-by: Julian Ruess <[email protected]>
Cc: [email protected]
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
commit 130e6de upstream.

The block layer validates buffer alignment using the device's
dma_alignment value. If dma_alignment is smaller than
logical_block_size(bp_block) -1, misaligned buffer incorrectly pass
validation and propagate to the lower-level driver.

This patch adjusts dma_alignment to be at least logical_block_size -1,
ensuring that misalignment buffers are properly rejected at the block
layer and do not reach the DASD driver unnecessarily.

Fixes: 2a07bb6 ("s390/dasd: Remove DMA alignment")
Reviewed-by: Stefan Haberland <[email protected]>
Cc: [email protected] #6.11+
Signed-off-by: Jaehoon Kim <[email protected]>
Signed-off-by: Stefan Haberland <[email protected]>
Signed-off-by: Jens Axboe <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 19, 2025
commit 8f4ed0c upstream.

Currently, if CCW request creation fails with -EINVAL, the DASD driver
returns BLK_STS_IOERR to the block layer.

This can happen, for example, when a user-space application such as QEMU
passes a misaligned buffer, but the original cause of the error is
masked as a generic I/O error.

This patch changes the behavior so that -EINVAL is returned as
BLK_STS_INVAL, allowing user space to properly detect alignment issues
instead of interpreting them as I/O errors.

Reviewed-by: Stefan Haberland <[email protected]>
Cc: [email protected] #6.11+
Signed-off-by: Jaehoon Kim <[email protected]>
Signed-off-by: Stefan Haberland <[email protected]>
Signed-off-by: Jens Axboe <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 23, 2025
commit 0aa1b76 upstream.

Another day, another syzkaller bug. KVM erroneously allows userspace to
pend vCPU events for a vCPU that hasn't been initialized yet, leading to
KVM interpreting a bunch of uninitialized garbage for routing /
injecting the exception.

In one case the injection code and the hyp disagree on whether the vCPU
has a 32bit EL1 and put the vCPU into an illegal mode for AArch64,
tripping the BUG() in exception_target_el() during the next injection:

  kernel BUG at arch/arm64/kvm/inject_fault.c:40!
  Internal error: Oops - BUG: 00000000f2000800 [#1]  SMP
  CPU: 3 UID: 0 PID: 318 Comm: repro Not tainted 6.17.0-rc4-00104-g10fd0285305d #6 PREEMPT
  Hardware name: linux,dummy-virt (DT)
  pstate: 21402009 (nzCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
  pc : exception_target_el+0x88/0x8c
  lr : pend_serror_exception+0x18/0x13c
  sp : ffff800082f03a10
  x29: ffff800082f03a10 x28: ffff0000cb132280 x27: 0000000000000000
  x26: 0000000000000000 x25: ffff0000c2a99c20 x24: 0000000000000000
  x23: 0000000000008000 x22: 0000000000000002 x21: 0000000000000004
  x20: 0000000000008000 x19: ffff0000c2a99c20 x18: 0000000000000000
  x17: 0000000000000000 x16: 0000000000000000 x15: 00000000200000c0
  x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
  x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
  x8 : ffff800082f03af8 x7 : 0000000000000000 x6 : 0000000000000000
  x5 : ffff800080f621f0 x4 : 0000000000000000 x3 : 0000000000000000
  x2 : 000000000040009b x1 : 0000000000000003 x0 : ffff0000c2a99c20
  Call trace:
   exception_target_el+0x88/0x8c (P)
   kvm_inject_serror_esr+0x40/0x3b4
   __kvm_arm_vcpu_set_events+0xf0/0x100
   kvm_arch_vcpu_ioctl+0x180/0x9d4
   kvm_vcpu_ioctl+0x60c/0x9f4
   __arm64_sys_ioctl+0xac/0x104
   invoke_syscall+0x48/0x110
   el0_svc_common.constprop.0+0x40/0xe0
   do_el0_svc+0x1c/0x28
   el0_svc+0x34/0xf0
   el0t_64_sync_handler+0xa0/0xe4
   el0t_64_sync+0x198/0x19c
  Code: f946bc01 b4fffe61 9101e020 17fffff2 (d4210000)

Reject the ioctls outright as no sane VMM would call these before
KVM_ARM_VCPU_INIT anyway. Even if it did the exception would've been
thrown away by the eventual reset of the vCPU's state.

Cc: [email protected] # 6.17
Fixes: b7b27fa ("arm/arm64: KVM: Add KVM_GET/SET_VCPU_EVENTS")
Signed-off-by: Oliver Upton <[email protected]>
Signed-off-by: Marc Zyngier <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Oct 29, 2025
commit 0570327 upstream.

Before disabling SR-IOV via config space accesses to the parent PF,
sriov_disable() first removes the PCI devices representing the VFs.

Since commit 9d16947 ("PCI: Add global pci_lock_rescan_remove()")
such removal operations are serialized against concurrent remove and
rescan using the pci_rescan_remove_lock. No such locking was ever added
in sriov_disable() however. In particular when commit 18f9e9d
("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device
removal into sriov_del_vfs() there was still no locking around the
pci_iov_remove_virtfn() calls.

On s390 the lack of serialization in sriov_disable() may cause double
remove and list corruption with the below (amended) trace being observed:

  PSW:  0704c00180000000 0000000c914e4b38 (klist_put+56)
  GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001
	00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480
	0000000000000001 0000000000000000 0000000000000000 0000000180692828
	00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8
  #0 [3800313fb20] device_del at c9158ad5c
  gregkh#1 [3800313fb88] pci_remove_bus_device at c915105ba
  gregkh#2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198
  gregkh#3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0
  gregkh#4 [3800313fc60] zpci_bus_remove_device at c90fb6104
  gregkh#5 [3800313fca0] __zpci_event_availability at c90fb3dca
  gregkh#6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2
  gregkh#7 [3800313fd60] crw_collect_info at c91905822
  gregkh#8 [3800313fe10] kthread at c90feb390
  gregkh#9 [3800313fe68] __ret_from_fork at c90f6aa64
  gregkh#10 [3800313fe98] ret_from_fork at c9194f3f2.

This is because in addition to sriov_disable() removing the VFs, the
platform also generates hot-unplug events for the VFs. This being the
reverse operation to the hotplug events generated by sriov_enable() and
handled via pdev->no_vf_scan. And while the event processing takes
pci_rescan_remove_lock and checks whether the struct pci_dev still exists,
the lack of synchronization makes this checking racy.

Other races may also be possible of course though given that this lack of
locking persisted so long observable races seem very rare. Even on s390 the
list corruption was only observed with certain devices since the platform
events are only triggered by config accesses after the removal, so as long
as the removal finished synchronously they would not race. Either way the
locking is missing so fix this by adding it to the sriov_del_vfs() helper.

Just like PCI rescan-remove, locking is also missing in sriov_add_vfs()
including for the error case where pci_stop_and_remove_bus_device() is
called without the PCI rescan-remove lock being held. Even in the non-error
case, adding new PCI devices and buses should be serialized via the PCI
rescan-remove lock. Add the necessary locking.

Fixes: 18f9e9d ("PCI/IOV: Factor out sriov_add_vfs()")
Signed-off-by: Niklas Schnelle <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
Reviewed-by: Benjamin Block <[email protected]>
Reviewed-by: Farhan Ali <[email protected]>
Reviewed-by: Julian Ruess <[email protected]>
Cc: [email protected]
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
gregkh pushed a commit that referenced this pull request Oct 29, 2025
commit 0570327 upstream.

Before disabling SR-IOV via config space accesses to the parent PF,
sriov_disable() first removes the PCI devices representing the VFs.

Since commit 9d16947 ("PCI: Add global pci_lock_rescan_remove()")
such removal operations are serialized against concurrent remove and
rescan using the pci_rescan_remove_lock. No such locking was ever added
in sriov_disable() however. In particular when commit 18f9e9d
("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device
removal into sriov_del_vfs() there was still no locking around the
pci_iov_remove_virtfn() calls.

On s390 the lack of serialization in sriov_disable() may cause double
remove and list corruption with the below (amended) trace being observed:

  PSW:  0704c00180000000 0000000c914e4b38 (klist_put+56)
  GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001
	00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480
	0000000000000001 0000000000000000 0000000000000000 0000000180692828
	00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8
  #0 [3800313fb20] device_del at c9158ad5c
  #1 [3800313fb88] pci_remove_bus_device at c915105ba
  #2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198
  #3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0
  #4 [3800313fc60] zpci_bus_remove_device at c90fb6104
  #5 [3800313fca0] __zpci_event_availability at c90fb3dca
  #6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2
  #7 [3800313fd60] crw_collect_info at c91905822
  #8 [3800313fe10] kthread at c90feb390
  #9 [3800313fe68] __ret_from_fork at c90f6aa64
  #10 [3800313fe98] ret_from_fork at c9194f3f2.

This is because in addition to sriov_disable() removing the VFs, the
platform also generates hot-unplug events for the VFs. This being the
reverse operation to the hotplug events generated by sriov_enable() and
handled via pdev->no_vf_scan. And while the event processing takes
pci_rescan_remove_lock and checks whether the struct pci_dev still exists,
the lack of synchronization makes this checking racy.

Other races may also be possible of course though given that this lack of
locking persisted so long observable races seem very rare. Even on s390 the
list corruption was only observed with certain devices since the platform
events are only triggered by config accesses after the removal, so as long
as the removal finished synchronously they would not race. Either way the
locking is missing so fix this by adding it to the sriov_del_vfs() helper.

Just like PCI rescan-remove, locking is also missing in sriov_add_vfs()
including for the error case where pci_stop_and_remove_bus_device() is
called without the PCI rescan-remove lock being held. Even in the non-error
case, adding new PCI devices and buses should be serialized via the PCI
rescan-remove lock. Add the necessary locking.

Fixes: 18f9e9d ("PCI/IOV: Factor out sriov_add_vfs()")
Signed-off-by: Niklas Schnelle <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
Reviewed-by: Benjamin Block <[email protected]>
Reviewed-by: Farhan Ali <[email protected]>
Reviewed-by: Julian Ruess <[email protected]>
Cc: [email protected]
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
piso77 pushed a commit to piso77/linux that referenced this pull request Dec 4, 2025
Marc Kleine-Budde <[email protected]> says:

Similarly to how CAN FD reuses the bittiming logic of Classical CAN, CAN XL
also reuses the entirety of CAN FD features, and, on top of that, adds new
features which are specific to CAN XL.

A so-called 'mixed-mode' is intended to have (XL-tolerant) CAN FD nodes and
CAN XL nodes on one CAN segment, where the FD-controllers can talk CC/FD
and the XL-controllers can talk CC/FD/XL. This mixed-mode utilizes the
known error-signalling (ES) for sending CC/FD/XL frames. For CAN FD and CAN
XL the tranceiver delay compensation (TDC) is supported to use common CAN
and CAN-SIG transceivers.

The CANXL-only mode disables the error-signalling in the CAN XL controller.
This mode does not allow CC/FD frames to be sent but additionally offers a
CAN XL transceiver mode switching (TMS) to send CAN XL frames with up to
20Mbit/s data rate. The TMS utilizes a PWM configuration which is added to
the netlink interface.

Configured with CAN_CTRLMODE_FD and CAN_CTRLMODE_XL this leads to:

FD=0 XL=0 CC-only mode         (ES=1)
FD=1 XL=0 FD/CC mixed-mode     (ES=1)
FD=1 XL=1 XL/FD/CC mixed-mode  (ES=1)
FD=0 XL=1 XL-only mode         (ES=0, TMS optional)

Patch gregkh#1 print defined ctrlmode strings capitalized to increase the
readability and to be in line with the 'ip' tool (iproute2).

Patch gregkh#2 is a small clean-up which makes can_calc_bittiming() use
NL_SET_ERR_MSG() instead of netdev_err().

Patch gregkh#3 adds a check in can_dev_dropped_skb() to drop CAN FD frames
when CAN FD is turned off.

Patch gregkh#4 adds CAN_CTRLMODE_RESTRICTED. Note that contrary to the other
CAN_CTRL_MODE_XL_* that are introduced in the later patches, this control
mode is not specific to CAN XL. The nuance is that because this restricted
mode was only added in ISO 11898-1:2024, it is made mandatory for CAN XL
devices but optional for other protocols. This is why this patch is added
as a preparation before introducing the core CAN XL logic.

Patch gregkh#5 adds all the CAN XL features which are inherited from CAN FD: the
nominal bittiming, the data bittiming and the TDC.

Patch gregkh#6 add a new CAN_CTRLMODE_XL_TMS control mode which is specific to
CAN XL to enable the transceiver mode switching (TMS) in XL-only mode.

Patch gregkh#7 adds a check in can_dev_dropped_skb() to drop CAN CC/FD frames
when the CAN XL controller is in CAN XL-only mode. The introduced
can_dev_in_xl_only_mode() function also determines the error-signalling
configuration for the CAN XL controllers.

Patch gregkh#8 to gregkh#11 add the PWM logic for the CAN XL TMS mode.

Patch gregkh#12 to gregkh#14 add different default sample-points for standard CAN and
CAN SIG transceivers (with TDC) and CAN XL transceivers using PWM in the
CAN XL TMS mode.

Patch gregkh#15 add a dummy_can driver for netlink testing and debugging.

Patch gregkh#16 check CAN frame type (CC/FD/XL) when writing those frames to the
CAN_RAW socket and reject them if it's not supported by the CAN interface.

Patch gregkh#17 increase the resolution when printing the bitrate error and
round-up the value to 0.01% in the case the resolution would still provide
values which would lead to 0.00%.

Link: https://patch.msgid.link/[email protected]
Signed-off-by: Marc Kleine-Budde <[email protected]>
piso77 pushed a commit to piso77/linux that referenced this pull request Dec 4, 2025
After a copy pair swap the block device's "device" symlink points to
the secondary CCW device, but the gendisk's parent remained the
primary, leaving /sys/block/<dasdx> under the wrong parent.

Move the gendisk to the secondary's device with device_move(), keeping
the sysfs topology consistent after the swap.

Fixes: 413862c ("s390/dasd: add copy pair swap capability")
Cc: [email protected] gregkh#6.1
Reviewed-by: Jan Hoeppner <[email protected]>
Signed-off-by: Stefan Haberland <[email protected]>
Signed-off-by: Jens Axboe <[email protected]>
piso77 pushed a commit to piso77/linux that referenced this pull request Dec 5, 2025
When the system has many cores and task switching is frequent,
setting set_ftrace_pid can cause frequent pid_list->lock contention
and high system sys usage.

For example, in a 288-core VM environment, we observed 267 CPUs
experiencing contention on pid_list->lock, with stack traces showing:

 gregkh#4 [ffffa6226fb4bc70] native_queued_spin_lock_slowpath at ffffffff99cd4b7e
 gregkh#5 [ffffa6226fb4bc90] _raw_spin_lock_irqsave at ffffffff99cd3e36
 gregkh#6 [ffffa6226fb4bca0] trace_pid_list_is_set at ffffffff99267554
 gregkh#7 [ffffa6226fb4bcc0] trace_ignore_this_task at ffffffff9925c288
 gregkh#8 [ffffa6226fb4bcd8] ftrace_filter_pid_sched_switch_probe at ffffffff99246efe
 gregkh#9 [ffffa6226fb4bcf0] __schedule at ffffffff99ccd161

Replaces the existing spinlock with a seqlock to allow concurrent readers,
while maintaining write exclusivity.

Link: https://patch.msgid.link/[email protected]
Reviewed-by: Huang Cun <[email protected]>
Signed-off-by: Yongliang Gao <[email protected]>
Signed-off-by: Steven Rostedt (Google) <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Dec 6, 2025
commit 9d274c1 upstream.

We have been seeing crashes on duplicate keys in
btrfs_set_item_key_safe():

  BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192)
  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.c:2620!
  invalid opcode: 0000 [gregkh#1] PREEMPT SMP PTI
  CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 gregkh#6
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
  RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs]

With the following stack trace:

  #0  btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4)
  gregkh#1  btrfs_drop_extents (fs/btrfs/file.c:411:4)
  gregkh#2  log_one_extent (fs/btrfs/tree-log.c:4732:9)
  gregkh#3  btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9)
  gregkh#4  btrfs_log_inode (fs/btrfs/tree-log.c:6626:9)
  gregkh#5  btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8)
  gregkh#6  btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8)
  gregkh#7  btrfs_sync_file (fs/btrfs/file.c:1933:8)
  gregkh#8  vfs_fsync_range (fs/sync.c:188:9)
  gregkh#9  vfs_fsync (fs/sync.c:202:9)
  gregkh#10 do_fsync (fs/sync.c:212:9)
  gregkh#11 __do_sys_fdatasync (fs/sync.c:225:9)
  gregkh#12 __se_sys_fdatasync (fs/sync.c:223:1)
  gregkh#13 __x64_sys_fdatasync (fs/sync.c:223:1)
  gregkh#14 do_syscall_x64 (arch/x86/entry/common.c:52:14)
  gregkh#15 do_syscall_64 (arch/x86/entry/common.c:83:7)
  gregkh#16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121)

So we're logging a changed extent from fsync, which is splitting an
extent in the log tree. But this split part already exists in the tree,
triggering the BUG().

This is the state of the log tree at the time of the crash, dumped with
drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py)
to get more details than btrfs_print_leaf() gives us:

  >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"])
  leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610
  leaf 33439744 flags 0x100000000000000
  fs uuid e5bd3946-400c-4223-8923-190ef1f18677
  chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
          item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160
                  generation 7 transid 9 size 8192 nbytes 8473563889606862198
                  block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
                  sequence 204 flags 0x10(PREALLOC)
                  atime 1716417703.220000000 (2024-05-22 15:41:43)
                  ctime 1716417704.983333333 (2024-05-22 15:41:44)
                  mtime 1716417704.983333333 (2024-05-22 15:41:44)
                  otime 17592186044416.000000000 (559444-03-08 01:40:16)
          item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13
                  index 195 namelen 3 name: 193
          item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37
                  location key (0 UNKNOWN.0 0) type XATTR
                  transid 7 data_len 1 name_len 6
                  name: user.a
                  data a
          item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53
                  generation 9 type 1 (regular)
                  extent data disk byte 303144960 nr 12288
                  extent data offset 0 nr 4096 ram 12288
                  extent compression 0 (none)
          item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 4096 nr 8192
          item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 8192 nr 4096
  ...

So the real problem happened earlier: notice that items 4 (4k-12k) and 5
(8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and
item 5 starts at i_size.

Here is the state of the filesystem tree at the time of the crash:

  >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root
  >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0))
  >>> print_extent_buffer(nodes[0])
  leaf 30425088 level 0 items 184 generation 9 owner 5
  leaf 30425088 flags 0x100000000000000
  fs uuid e5bd3946-400c-4223-8923-190ef1f18677
  chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
  	...
          item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160
                  generation 7 transid 7 size 4096 nbytes 12288
                  block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
                  sequence 6 flags 0x10(PREALLOC)
                  atime 1716417703.220000000 (2024-05-22 15:41:43)
                  ctime 1716417703.220000000 (2024-05-22 15:41:43)
                  mtime 1716417703.220000000 (2024-05-22 15:41:43)
                  otime 1716417703.220000000 (2024-05-22 15:41:43)
          item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13
                  index 195 namelen 3 name: 193
          item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37
                  location key (0 UNKNOWN.0 0) type XATTR
                  transid 7 data_len 1 name_len 6
                  name: user.a
                  data a
          item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53
                  generation 9 type 1 (regular)
                  extent data disk byte 303144960 nr 12288
                  extent data offset 0 nr 8192 ram 12288
                  extent compression 0 (none)
          item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 8192 nr 4096

Item 5 in the log tree corresponds to item 183 in the filesystem tree,
but nothing matches item 4. Furthermore, item 183 is the last item in
the leaf.

btrfs_log_prealloc_extents() is responsible for logging prealloc extents
beyond i_size. It first truncates any previously logged prealloc extents
that start beyond i_size. Then, it walks the filesystem tree and copies
the prealloc extent items to the log tree.

If it hits the end of a leaf, then it calls btrfs_next_leaf(), which
unlocks the tree and does another search. However, while the filesystem
tree is unlocked, an ordered extent completion may modify the tree. In
particular, it may insert an extent item that overlaps with an extent
item that was already copied to the log tree.

This may manifest in several ways depending on the exact scenario,
including an EEXIST error that is silently translated to a full sync,
overlapping items in the log tree, or this crash. This particular crash
is triggered by the following sequence of events:

- Initially, the file has i_size=4k, a regular extent from 0-4k, and a
  prealloc extent beyond i_size from 4k-12k. The prealloc extent item is
  the last item in its B-tree leaf.
- The file is fsync'd, which copies its inode item and both extent items
  to the log tree.
- An xattr is set on the file, which sets the
  BTRFS_INODE_COPY_EVERYTHING flag.
- The range 4k-8k in the file is written using direct I/O. i_size is
  extended to 8k, but the ordered extent is still in flight.
- The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this
  calls copy_inode_items_to_log(), which calls
  btrfs_log_prealloc_extents().
- btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the
  filesystem tree. Since it starts before i_size, it skips it. Since it
  is the last item in its B-tree leaf, it calls btrfs_next_leaf().
- btrfs_next_leaf() unlocks the path.
- The ordered extent completion runs, which converts the 4k-8k part of
  the prealloc extent to written and inserts the remaining prealloc part
  from 8k-12k.
- btrfs_next_leaf() does a search and finds the new prealloc extent
  8k-12k.
- btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into
  the log tree. Note that it overlaps with the 4k-12k prealloc extent
  that was copied to the log tree by the first fsync.
- fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k
  extent that was written.
- This tries to drop the range 4k-8k in the log tree, which requires
  adjusting the start of the 4k-12k prealloc extent in the log tree to
  8k.
- btrfs_set_item_key_safe() sees that there is already an extent
  starting at 8k in the log tree and calls BUG().

Fix this by detecting when we're about to insert an overlapping file
extent item in the log tree and truncating the part that would overlap.

CC: [email protected] # 6.1+
Reviewed-by: Filipe Manana <[email protected]>
Signed-off-by: Omar Sandoval <[email protected]>
Signed-off-by: David Sterba <[email protected]>
Signed-off-by: Harshvardhan Jha <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Dec 7, 2025
… 'T'

When perf report with annotation for a symbol, press 's' and 'T', then exit
the annotate browser. Once annotate the same symbol, the annotate browser
will crash.

The browser.arch was required to be correctly updated when data type
feature was enabled by 'T'. Usually it was initialized by symbol__annotate2
function. If a symbol has already been correctly annotated at the first
time, it should not call the symbol__annotate2 function again, thus the
browser.arch will not get initialized. Then at the second time to show the
annotate browser, the data type needs to be displayed but the browser.arch
is empty.

Stack trace as below:

Perf: Segmentation fault
-------- backtrace --------
    #0 0x55d365 in ui__signal_backtrace setup.c:0
    gregkh#1 0x7f5ff1a3e930 in __restore_rt libc.so.6[3e930]
    gregkh#2 0x570f08 in arch__is perf[570f08]
    gregkh#3 0x562186 in annotate_get_insn_location perf[562186]
    gregkh#4 0x562626 in __hist_entry__get_data_type annotate.c:0
    gregkh#5 0x56476d in annotation_line__write perf[56476d]
    gregkh#6 0x54e2db in annotate_browser__write annotate.c:0
    gregkh#7 0x54d061 in ui_browser__list_head_refresh perf[54d061]
    gregkh#8 0x54dc9e in annotate_browser__refresh annotate.c:0
    gregkh#9 0x54c03d in __ui_browser__refresh browser.c:0
    gregkh#10 0x54ccf8 in ui_browser__run perf[54ccf8]
    gregkh#11 0x54eb92 in __hist_entry__tui_annotate perf[54eb92]
    gregkh#12 0x552293 in do_annotate hists.c:0
    gregkh#13 0x55941c in evsel__hists_browse hists.c:0
    gregkh#14 0x55b00f in evlist__tui_browse_hists perf[55b00f]
    gregkh#15 0x42ff02 in cmd_report perf[42ff02]
    gregkh#16 0x494008 in run_builtin perf.c:0
    gregkh#17 0x494305 in handle_internal_command perf.c:0
    gregkh#18 0x410547 in main perf[410547]
    gregkh#19 0x7f5ff1a295d0 in __libc_start_call_main libc.so.6[295d0]
    gregkh#20 0x7f5ff1a29680 in __libc_start_main@@GLIBC_2.34 libc.so.6[29680]
    gregkh#21 0x410b75 in _start perf[410b75]

Fixes: 1d4374a ("perf annotate: Add 'T' hot key to toggle data type display")
Reviewed-by: James Clark <[email protected]>
Tested-by: Namhyung Kim <[email protected]>
Signed-off-by: Tianyou Li <[email protected]>
Signed-off-by: Namhyung Kim <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Dec 7, 2025
When using perf record with the `--overwrite` option, a segmentation fault
occurs if an event fails to open. For example:

  perf record -e cycles-ct -F 1000 -a --overwrite
  Error:
  cycles-ct:H: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'
  perf: Segmentation fault
      #0 0x6466b6 in dump_stack debug.c:366
      gregkh#1 0x646729 in sighandler_dump_stack debug.c:378
      gregkh#2 0x453fd1 in sigsegv_handler builtin-record.c:722
      gregkh#3 0x7f8454e65090 in __restore_rt libc-2.32.so[54090]
      gregkh#4 0x6c5671 in __perf_event__synthesize_id_index synthetic-events.c:1862
      gregkh#5 0x6c5ac0 in perf_event__synthesize_id_index synthetic-events.c:1943
      gregkh#6 0x458090 in record__synthesize builtin-record.c:2075
      gregkh#7 0x45a85a in __cmd_record builtin-record.c:2888
      gregkh#8 0x45deb6 in cmd_record builtin-record.c:4374
      gregkh#9 0x4e5e33 in run_builtin perf.c:349
      gregkh#10 0x4e60bf in handle_internal_command perf.c:401
      gregkh#11 0x4e6215 in run_argv perf.c:448
      gregkh#12 0x4e653a in main perf.c:555
      gregkh#13 0x7f8454e4fa72 in __libc_start_main libc-2.32.so[3ea72]
      gregkh#14 0x43a3ee in _start ??:0

The --overwrite option implies --tail-synthesize, which collects non-sample
events reflecting the system status when recording finishes. However, when
evsel opening fails (e.g., unsupported event 'cycles-ct'), session->evlist
is not initialized and remains NULL. The code unconditionally calls
record__synthesize() in the error path, which iterates through the NULL
evlist pointer and causes a segfault.

To fix it, move the record__synthesize() call inside the error check block, so
it's only called when there was no error during recording, ensuring that evlist
is properly initialized.

Fixes: 4ea648a ("perf record: Add --tail-synthesize option")
Signed-off-by: Shuai Xue <[email protected]>
Signed-off-by: Namhyung Kim <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Dec 7, 2025
When interrupting perf stat in repeat mode with a signal the signal is
passed to the child process but the repeat doesn't terminate:
```
$ perf stat -v --null --repeat 10 sleep 1
Control descriptor is not initialized
[ perf stat: executing run gregkh#1 ... ]
[ perf stat: executing run gregkh#2 ... ]
^Csleep: Interrupt
[ perf stat: executing run gregkh#3 ... ]
[ perf stat: executing run gregkh#4 ... ]
[ perf stat: executing run gregkh#5 ... ]
[ perf stat: executing run gregkh#6 ... ]
[ perf stat: executing run gregkh#7 ... ]
[ perf stat: executing run gregkh#8 ... ]
[ perf stat: executing run gregkh#9 ... ]
[ perf stat: executing run gregkh#10 ... ]

 Performance counter stats for 'sleep 1' (10 runs):

            0.9500 +- 0.0512 seconds time elapsed  ( +-  5.39% )

0.01user 0.02system 0:09.53elapsed 0%CPU (0avgtext+0avgdata 18940maxresident)k
29944inputs+0outputs (0major+2629minor)pagefaults 0swaps
```

Terminate the repeated run and give a reasonable exit value:
```
$ perf stat -v --null --repeat 10 sleep 1
Control descriptor is not initialized
[ perf stat: executing run gregkh#1 ... ]
[ perf stat: executing run gregkh#2 ... ]
[ perf stat: executing run gregkh#3 ... ]
^Csleep: Interrupt

 Performance counter stats for 'sleep 1' (10 runs):

             0.680 +- 0.321 seconds time elapsed  ( +- 47.16% )

Command exited with non-zero status 130
0.00user 0.01system 0:02.05elapsed 0%CPU (0avgtext+0avgdata 70688maxresident)k
0inputs+0outputs (0major+5002minor)pagefaults 0swaps
```

Note, this also changes the exit value for non-repeat runs when
interrupted by a signal.

Reported-by: Ingo Molnar <[email protected]>
Closes: https://lore.kernel.org/lkml/[email protected]/
Signed-off-by: Ian Rogers <[email protected]>
Tested-by: Thomas Richter <[email protected]>
Signed-off-by: Namhyung Kim <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Dec 18, 2025
[ Upstream commit 163e5f2 ]

When using perf record with the `--overwrite` option, a segmentation fault
occurs if an event fails to open. For example:

  perf record -e cycles-ct -F 1000 -a --overwrite
  Error:
  cycles-ct:H: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'
  perf: Segmentation fault
      #0 0x6466b6 in dump_stack debug.c:366
      gregkh#1 0x646729 in sighandler_dump_stack debug.c:378
      gregkh#2 0x453fd1 in sigsegv_handler builtin-record.c:722
      gregkh#3 0x7f8454e65090 in __restore_rt libc-2.32.so[54090]
      gregkh#4 0x6c5671 in __perf_event__synthesize_id_index synthetic-events.c:1862
      gregkh#5 0x6c5ac0 in perf_event__synthesize_id_index synthetic-events.c:1943
      gregkh#6 0x458090 in record__synthesize builtin-record.c:2075
      gregkh#7 0x45a85a in __cmd_record builtin-record.c:2888
      gregkh#8 0x45deb6 in cmd_record builtin-record.c:4374
      gregkh#9 0x4e5e33 in run_builtin perf.c:349
      gregkh#10 0x4e60bf in handle_internal_command perf.c:401
      gregkh#11 0x4e6215 in run_argv perf.c:448
      gregkh#12 0x4e653a in main perf.c:555
      gregkh#13 0x7f8454e4fa72 in __libc_start_main libc-2.32.so[3ea72]
      gregkh#14 0x43a3ee in _start ??:0

The --overwrite option implies --tail-synthesize, which collects non-sample
events reflecting the system status when recording finishes. However, when
evsel opening fails (e.g., unsupported event 'cycles-ct'), session->evlist
is not initialized and remains NULL. The code unconditionally calls
record__synthesize() in the error path, which iterates through the NULL
evlist pointer and causes a segfault.

To fix it, move the record__synthesize() call inside the error check block, so
it's only called when there was no error during recording, ensuring that evlist
is properly initialized.

Fixes: 4ea648a ("perf record: Add --tail-synthesize option")
Signed-off-by: Shuai Xue <[email protected]>
Signed-off-by: Namhyung Kim <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Dec 18, 2025
[ Upstream commit 163e5f2 ]

When using perf record with the `--overwrite` option, a segmentation fault
occurs if an event fails to open. For example:

  perf record -e cycles-ct -F 1000 -a --overwrite
  Error:
  cycles-ct:H: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'
  perf: Segmentation fault
      #0 0x6466b6 in dump_stack debug.c:366
      #1 0x646729 in sighandler_dump_stack debug.c:378
      #2 0x453fd1 in sigsegv_handler builtin-record.c:722
      #3 0x7f8454e65090 in __restore_rt libc-2.32.so[54090]
      #4 0x6c5671 in __perf_event__synthesize_id_index synthetic-events.c:1862
      #5 0x6c5ac0 in perf_event__synthesize_id_index synthetic-events.c:1943
      #6 0x458090 in record__synthesize builtin-record.c:2075
      #7 0x45a85a in __cmd_record builtin-record.c:2888
      #8 0x45deb6 in cmd_record builtin-record.c:4374
      #9 0x4e5e33 in run_builtin perf.c:349
      #10 0x4e60bf in handle_internal_command perf.c:401
      #11 0x4e6215 in run_argv perf.c:448
      #12 0x4e653a in main perf.c:555
      #13 0x7f8454e4fa72 in __libc_start_main libc-2.32.so[3ea72]
      #14 0x43a3ee in _start ??:0

The --overwrite option implies --tail-synthesize, which collects non-sample
events reflecting the system status when recording finishes. However, when
evsel opening fails (e.g., unsupported event 'cycles-ct'), session->evlist
is not initialized and remains NULL. The code unconditionally calls
record__synthesize() in the error path, which iterates through the NULL
evlist pointer and causes a segfault.

To fix it, move the record__synthesize() call inside the error check block, so
it's only called when there was no error during recording, ensuring that evlist
is properly initialized.

Fixes: 4ea648a ("perf record: Add --tail-synthesize option")
Signed-off-by: Shuai Xue <[email protected]>
Signed-off-by: Namhyung Kim <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
gregkh pushed a commit that referenced this pull request Dec 18, 2025
[ Upstream commit 163e5f2 ]

When using perf record with the `--overwrite` option, a segmentation fault
occurs if an event fails to open. For example:

  perf record -e cycles-ct -F 1000 -a --overwrite
  Error:
  cycles-ct:H: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'
  perf: Segmentation fault
      #0 0x6466b6 in dump_stack debug.c:366
      #1 0x646729 in sighandler_dump_stack debug.c:378
      #2 0x453fd1 in sigsegv_handler builtin-record.c:722
      #3 0x7f8454e65090 in __restore_rt libc-2.32.so[54090]
      #4 0x6c5671 in __perf_event__synthesize_id_index synthetic-events.c:1862
      #5 0x6c5ac0 in perf_event__synthesize_id_index synthetic-events.c:1943
      #6 0x458090 in record__synthesize builtin-record.c:2075
      #7 0x45a85a in __cmd_record builtin-record.c:2888
      #8 0x45deb6 in cmd_record builtin-record.c:4374
      #9 0x4e5e33 in run_builtin perf.c:349
      #10 0x4e60bf in handle_internal_command perf.c:401
      #11 0x4e6215 in run_argv perf.c:448
      #12 0x4e653a in main perf.c:555
      #13 0x7f8454e4fa72 in __libc_start_main libc-2.32.so[3ea72]
      #14 0x43a3ee in _start ??:0

The --overwrite option implies --tail-synthesize, which collects non-sample
events reflecting the system status when recording finishes. However, when
evsel opening fails (e.g., unsupported event 'cycles-ct'), session->evlist
is not initialized and remains NULL. The code unconditionally calls
record__synthesize() in the error path, which iterates through the NULL
evlist pointer and causes a segfault.

To fix it, move the record__synthesize() call inside the error check block, so
it's only called when there was no error during recording, ensuring that evlist
is properly initialized.

Fixes: 4ea648a ("perf record: Add --tail-synthesize option")
Signed-off-by: Shuai Xue <[email protected]>
Signed-off-by: Namhyung Kim <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
github-actions bot pushed a commit to sirdarckcat/linux-1 that referenced this pull request Dec 18, 2025
In the current implementation, the enetc_xdp_xmit() always transmits
redirected XDP frames even if the link is down, but the frames cannot
be transmitted from TX BD rings when the link is down, so the frames
are still kept in the TX BD rings. If the XDP program is uninstalled,
users will see the following warning logs.

fsl_enetc 0000:00:00.0 eno0: timeout for tx ring gregkh#6 clear

More worse, the TX BD ring cannot work properly anymore, because the
HW PIR and CIR are not equal after the re-initialization of the TX
BD ring. At this point, the BDs between CIR and PIR are invalid,
which will cause a hardware malfunction.

Another reason is that there is internal context in the ring prefetch
logic that will retain the state from the first incarnation of the ring
and continue prefetching from the stale location when we re-initialize
the ring. The internal context is only reset by an FLR. That is to say,
for LS1028A ENETC, software cannot set the HW CIR and PIR when
initializing the TX BD ring.

It does not make sense to transmit redirected XDP frames when the link is
down. Add a link status check to prevent transmission in this condition.
This fixes part of the issue, but more complex cases remain. For example,
the TX BD ring may still contain unsent frames when the link goes down.
Those situations require additional patches, which will build on this
one.

Fixes: 9d2b68c ("net: enetc: add support for XDP_REDIRECT")
Signed-off-by: Wei Fang <[email protected]>
Reviewed-by: Frank Li <[email protected]>
Reviewed-by: Hariprasad Kelam <[email protected]>
Reviewed-by: Vladimir Oltean <[email protected]>
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Paolo Abeni <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants