This repository is the official implementation of PSP: Pre-Training and Structure Prompt Tuning for Graph Neural Networks.
This implemetation is based on Python3. To run the code, you need the following dependencies:
python==3.9.0
torch==1.12.0
torch-geometric==2.3.1
torch-cluster==1.6.0
torch-scatter==2.1.0
torch-sparse==0.6.15
torch-spline-conv==1.2.1
dgl==0.9.0
scikit-learn==1.1.3
scipy==1.9.3
numpy==1.23.5
pandas==1.5.2
Default dataset is COX2. You need to change the corresponding parameters in pre_train.py and prompt.py to train and evaluate on other datasets.
Pretrain:
python pre_train.py
Prompt tuning:
python prompt.py
Default dataset is CiteSeer. You need to change the corresponding parameters in pre_train.py and prompt_graph.py to train and evaluate on other datasets.
Pretrain:
python pre_train.py
Prompt tuning:
python prompt_graph.py
