-
Notifications
You must be signed in to change notification settings - Fork 237
/
Copy pathcomprehensions.go
428 lines (399 loc) · 14.7 KB
/
comprehensions.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
// Copyright 2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ext
import (
"fmt"
"math"
"github.com/google/cel-go/cel"
"github.com/google/cel-go/common/ast"
"github.com/google/cel-go/common/operators"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
"github.com/google/cel-go/parser"
)
const (
mapInsert = "cel.@mapInsert"
mapInsertOverloadMap = "@mapInsert_map_map"
mapInsertOverloadKeyValue = "@mapInsert_map_key_value"
)
// TwoVarComprehensions introduces support for two-variable comprehensions.
//
// The two-variable form of comprehensions looks similar to the one-variable counterparts.
// Where possible, the same macro names were used and additional macro signatures added.
// The notable distinction for two-variable comprehensions is the introduction of
// `transformList`, `transformMap`, and `transformMapEntry` support for list and map types
// rather than the more traditional `map` and `filter` macros.
//
// # All
//
// Comprehension which tests whether all elements in the list or map satisfy a given
// predicate. The `all` macro evaluates in a manner consistent with logical AND and will
// short-circuit when encountering a `false` value.
//
// <list>.all(indexVar, valueVar, <predicate>) -> bool
// <map>.all(keyVar, valueVar, <predicate>) -> bool
//
// Examples:
//
// [1, 2, 3].all(i, j, i < j) // returns true
// {'hello': 'world', 'taco': 'taco'}.all(k, v, k != v) // returns false
//
// // Combines two-variable comprehension with single variable
// {'h': ['hello', 'hi'], 'j': ['joke', 'jog']}
// .all(k, vals, vals.all(v, v.startsWith(k))) // returns true
//
// # Exists
//
// Comprehension which tests whether any element in a list or map exists which satisfies
// a given predicate. The `exists` macro evaluates in a manner consistent with logical OR
// and will short-circuit when encountering a `true` value.
//
// <list>.exists(indexVar, valueVar, <predicate>) -> bool
// <map>.exists(keyVar, valueVar, <predicate>) -> bool
//
// Examples:
//
// {'greeting': 'hello', 'farewell': 'goodbye'}
// .exists(k, v, k.startsWith('good') || v.endsWith('bye')) // returns true
// [1, 2, 4, 8, 16].exists(i, v, v == 1024 && i == 10) // returns false
//
// # ExistsOne
//
// Comprehension which tests whether exactly one element in a list or map exists which
// satisfies a given predicate expression. This comprehension does not short-circuit in
// keeping with the one-variable exists one macro semantics.
//
// <list>.existsOne(indexVar, valueVar, <predicate>)
// <map>.existsOne(keyVar, valueVar, <predicate>)
//
// This macro may also be used with the `exists_one` function name, for compatibility
// with the one-variable macro of the same name.
//
// Examples:
//
// [1, 2, 1, 3, 1, 4].existsOne(i, v, i == 1 || v == 1) // returns false
// [1, 1, 2, 2, 3, 3].existsOne(i, v, i == 2 && v == 2) // returns true
// {'i': 0, 'j': 1, 'k': 2}.existsOne(i, v, i == 'l' || v == 1) // returns true
//
// # TransformList
//
// Comprehension which converts a map or a list into a list value. The output expression
// of the comprehension determines the contents of the output list. Elements in the list
// may optionally be filtered according to a predicate expression, where elements that
// satisfy the predicate are transformed.
//
// <list>.transformList(indexVar, valueVar, <transform>)
// <list>.transformList(indexVar, valueVar, <filter>, <transform>)
// <map>.transformList(keyVar, valueVar, <transform>)
// <map>.transformList(keyVar, valueVar, <filter>, <transform>)
//
// Examples:
//
// [1, 2, 3].transformList(indexVar, valueVar,
// (indexVar * valueVar) + valueVar) // returns [1, 4, 9]
// [1, 2, 3].transformList(indexVar, valueVar, indexVar % 2 == 0
// (indexVar * valueVar) + valueVar) // returns [1, 9]
// {'greeting': 'hello', 'farewell': 'goodbye'}
// .transformList(k, _, k) // returns ['greeting', 'farewell']
// {'greeting': 'hello', 'farewell': 'goodbye'}
// .transformList(_, v, v) // returns ['hello', 'goodbye']
//
// # TransformMap
//
// Comprehension which converts a map or a list into a map value. The output expression
// of the comprehension determines the value of the output map entry; however, the key
// remains fixed. Elements in the map may optionally be filtered according to a predicate
// expression, where elements that satisfy the predicate are transformed.
//
// <list>.transformMap(indexVar, valueVar, <transform>)
// <list>.transformMap(indexVar, valueVar, <filter>, <transform>)
// <map>.transformMap(keyVar, valueVar, <transform>)
// <map>.transformMap(keyVar, valueVar, <filter>, <transform>)
//
// Examples:
//
// [1, 2, 3].transformMap(indexVar, valueVar,
// (indexVar * valueVar) + valueVar) // returns {0: 1, 1: 4, 2: 9}
// [1, 2, 3].transformMap(indexVar, valueVar, indexVar % 2 == 0
// (indexVar * valueVar) + valueVar) // returns {0: 1, 2: 9}
// {'greeting': 'hello'}.transformMap(k, v, v + '!') // returns {'greeting': 'hello!'}
//
// # TransformMapEntry
//
// Comprehension which converts a map or a list into a map value; however, this transform
// expects the entry expression be a map literal. If the tranform produces an entry which
// duplicates a key in the target map, the comprehension will error. Note, that key
// equality is determined using CEL equality which asserts that numeric values which are
// equal, even if they don't have the same type will cause a key collision.
//
// Elements in the map may optionally be filtered according to a predicate expression, where
// elements that satisfy the predicate are transformed.
//
// <list>.transformMap(indexVar, valueVar, <transform>)
// <list>.transformMap(indexVar, valueVar, <filter>, <transform>)
// <map>.transformMap(keyVar, valueVar, <transform>)
// <map>.transformMap(keyVar, valueVar, <filter>, <transform>)
//
// Examples:
//
// // returns {'hello': 'greeting'}
// {'greeting': 'hello'}.transformMapEntry(keyVar, valueVar, {valueVar: keyVar})
// // reverse lookup, require all values in list be unique
// [1, 2, 3].transformMapEntry(indexVar, valueVar, {valueVar: indexVar})
//
// {'greeting': 'aloha', 'farewell': 'aloha'}
// .transformMapEntry(keyVar, valueVar, {valueVar: keyVar}) // error, duplicate key
func TwoVarComprehensions(options ...TwoVarComprehensionsOption) cel.EnvOption {
l := &compreV2Lib{version: math.MaxUint32}
for _, o := range options {
l = o(l)
}
return cel.Lib(l)
}
// TwoVarComprehensionsOption declares a functional operator for configuring two-variable comprehensions.
type TwoVarComprehensionsOption func(*compreV2Lib) *compreV2Lib
// TwoVarComprehensionsVersion sets the library version for two-variable comprehensions.
func TwoVarComprehensionsVersion(version uint32) TwoVarComprehensionsOption {
return func(lib *compreV2Lib) *compreV2Lib {
lib.version = version
return lib
}
}
type compreV2Lib struct {
version uint32
}
// LibraryName implements that SingletonLibrary interface method.
func (*compreV2Lib) LibraryName() string {
return "cel.lib.ext.comprev2"
}
// CompileOptions implements the cel.Library interface method.
func (*compreV2Lib) CompileOptions() []cel.EnvOption {
kType := cel.TypeParamType("K")
vType := cel.TypeParamType("V")
mapKVType := cel.MapType(kType, vType)
opts := []cel.EnvOption{
cel.Macros(
cel.ReceiverMacro("all", 3, quantifierAll),
cel.ReceiverMacro("exists", 3, quantifierExists),
cel.ReceiverMacro("existsOne", 3, quantifierExistsOne),
cel.ReceiverMacro("exists_one", 3, quantifierExistsOne),
cel.ReceiverMacro("transformList", 3, transformList),
cel.ReceiverMacro("transformList", 4, transformList),
cel.ReceiverMacro("transformMap", 3, transformMap),
cel.ReceiverMacro("transformMap", 4, transformMap),
cel.ReceiverMacro("transformMapEntry", 3, transformMapEntry),
cel.ReceiverMacro("transformMapEntry", 4, transformMapEntry),
),
cel.Function(mapInsert,
cel.Overload(mapInsertOverloadKeyValue, []*cel.Type{mapKVType, kType, vType}, mapKVType,
cel.FunctionBinding(func(args ...ref.Val) ref.Val {
m := args[0].(traits.Mapper)
k := args[1]
v := args[2]
return types.InsertMapKeyValue(m, k, v)
})),
cel.Overload(mapInsertOverloadMap, []*cel.Type{mapKVType, mapKVType}, mapKVType,
cel.BinaryBinding(func(targetMap, updateMap ref.Val) ref.Val {
tm := targetMap.(traits.Mapper)
um := updateMap.(traits.Mapper)
umIt := um.Iterator()
for umIt.HasNext() == types.True {
k := umIt.Next()
updateOrErr := types.InsertMapKeyValue(tm, k, um.Get(k))
if types.IsError(updateOrErr) {
return updateOrErr
}
tm = updateOrErr.(traits.Mapper)
}
return tm
})),
),
}
return opts
}
// ProgramOptions implements the cel.Library interface method
func (*compreV2Lib) ProgramOptions() []cel.ProgramOption {
return []cel.ProgramOption{}
}
func quantifierAll(mef cel.MacroExprFactory, target ast.Expr, args []ast.Expr) (ast.Expr, *cel.Error) {
iterVar1, iterVar2, err := extractIterVars(mef, args[0], args[1])
if err != nil {
return nil, err
}
return mef.NewComprehensionTwoVar(
target,
iterVar1,
iterVar2,
mef.AccuIdentName(),
/*accuInit=*/ mef.NewLiteral(types.True),
/*condition=*/ mef.NewCall(operators.NotStrictlyFalse, mef.NewAccuIdent()),
/*step=*/ mef.NewCall(operators.LogicalAnd, mef.NewAccuIdent(), args[2]),
/*result=*/ mef.NewAccuIdent(),
), nil
}
func quantifierExists(mef cel.MacroExprFactory, target ast.Expr, args []ast.Expr) (ast.Expr, *cel.Error) {
iterVar1, iterVar2, err := extractIterVars(mef, args[0], args[1])
if err != nil {
return nil, err
}
return mef.NewComprehensionTwoVar(
target,
iterVar1,
iterVar2,
mef.AccuIdentName(),
/*accuInit=*/ mef.NewLiteral(types.False),
/*condition=*/ mef.NewCall(operators.NotStrictlyFalse, mef.NewCall(operators.LogicalNot, mef.NewAccuIdent())),
/*step=*/ mef.NewCall(operators.LogicalOr, mef.NewAccuIdent(), args[2]),
/*result=*/ mef.NewAccuIdent(),
), nil
}
func quantifierExistsOne(mef cel.MacroExprFactory, target ast.Expr, args []ast.Expr) (ast.Expr, *cel.Error) {
iterVar1, iterVar2, err := extractIterVars(mef, args[0], args[1])
if err != nil {
return nil, err
}
return mef.NewComprehensionTwoVar(
target,
iterVar1,
iterVar2,
mef.AccuIdentName(),
/*accuInit=*/ mef.NewLiteral(types.Int(0)),
/*condition=*/ mef.NewLiteral(types.True),
/*step=*/ mef.NewCall(operators.Conditional, args[2],
mef.NewCall(operators.Add, mef.NewAccuIdent(), mef.NewLiteral(types.Int(1))),
mef.NewAccuIdent()),
/*result=*/ mef.NewCall(operators.Equals, mef.NewAccuIdent(), mef.NewLiteral(types.Int(1))),
), nil
}
func transformList(mef cel.MacroExprFactory, target ast.Expr, args []ast.Expr) (ast.Expr, *cel.Error) {
iterVar1, iterVar2, err := extractIterVars(mef, args[0], args[1])
if err != nil {
return nil, err
}
var transform ast.Expr
var filter ast.Expr
if len(args) == 4 {
filter = args[2]
transform = args[3]
} else {
filter = nil
transform = args[2]
}
// accumulator = accumulator + [transform]
step := mef.NewCall(operators.Add, mef.NewAccuIdent(), mef.NewList(transform))
if filter != nil {
// accumulator = (filter) ? accumulator + [transform] : accumulator
step = mef.NewCall(operators.Conditional, filter, step, mef.NewAccuIdent())
}
return mef.NewComprehensionTwoVar(
target,
iterVar1,
iterVar2,
mef.AccuIdentName(),
/*accuInit=*/ mef.NewList(),
/*condition=*/ mef.NewLiteral(types.True),
step,
/*result=*/ mef.NewAccuIdent(),
), nil
}
func transformMap(mef cel.MacroExprFactory, target ast.Expr, args []ast.Expr) (ast.Expr, *cel.Error) {
iterVar1, iterVar2, err := extractIterVars(mef, args[0], args[1])
if err != nil {
return nil, err
}
var transform ast.Expr
var filter ast.Expr
if len(args) == 4 {
filter = args[2]
transform = args[3]
} else {
filter = nil
transform = args[2]
}
// accumulator = cel.@mapInsert(accumulator, iterVar1, transform)
step := mef.NewCall(mapInsert, mef.NewAccuIdent(), mef.NewIdent(iterVar1), transform)
if filter != nil {
// accumulator = (filter) ? cel.@mapInsert(accumulator, iterVar1, transform) : accumulator
step = mef.NewCall(operators.Conditional, filter, step, mef.NewAccuIdent())
}
return mef.NewComprehensionTwoVar(
target,
iterVar1,
iterVar2,
mef.AccuIdentName(),
/*accuInit=*/ mef.NewMap(),
/*condition=*/ mef.NewLiteral(types.True),
step,
/*result=*/ mef.NewAccuIdent(),
), nil
}
func transformMapEntry(mef cel.MacroExprFactory, target ast.Expr, args []ast.Expr) (ast.Expr, *cel.Error) {
iterVar1, iterVar2, err := extractIterVars(mef, args[0], args[1])
if err != nil {
return nil, err
}
var transform ast.Expr
var filter ast.Expr
if len(args) == 4 {
filter = args[2]
transform = args[3]
} else {
filter = nil
transform = args[2]
}
// accumulator = cel.@mapInsert(accumulator, transform)
step := mef.NewCall(mapInsert, mef.NewAccuIdent(), transform)
if filter != nil {
// accumulator = (filter) ? cel.@mapInsert(accumulator, transform) : accumulator
step = mef.NewCall(operators.Conditional, filter, step, mef.NewAccuIdent())
}
return mef.NewComprehensionTwoVar(
target,
iterVar1,
iterVar2,
mef.AccuIdentName(),
/*accuInit=*/ mef.NewMap(),
/*condition=*/ mef.NewLiteral(types.True),
step,
/*result=*/ mef.NewAccuIdent(),
), nil
}
func extractIterVars(mef cel.MacroExprFactory, arg0, arg1 ast.Expr) (string, string, *cel.Error) {
iterVar1, err := extractIterVar(mef, arg0)
if err != nil {
return "", "", err
}
iterVar2, err := extractIterVar(mef, arg1)
if err != nil {
return "", "", err
}
if iterVar1 == iterVar2 {
return "", "", mef.NewError(arg1.ID(), fmt.Sprintf("duplicate variable name: %s", iterVar1))
}
if iterVar1 == mef.AccuIdentName() || iterVar1 == parser.AccumulatorName {
return "", "", mef.NewError(arg0.ID(), "iteration variable overwrites accumulator variable")
}
if iterVar2 == mef.AccuIdentName() || iterVar2 == parser.AccumulatorName {
return "", "", mef.NewError(arg1.ID(), "iteration variable overwrites accumulator variable")
}
return iterVar1, iterVar2, nil
}
func extractIterVar(mef cel.MacroExprFactory, target ast.Expr) (string, *cel.Error) {
iterVar, found := extractIdent(target)
if !found {
return "", mef.NewError(target.ID(), "argument must be a simple name")
}
return iterVar, nil
}