Personalized Neoadjuvant Therapy Recommendations in Breast Cancer from an Explainable Multi-Omics Response Model
We developed and externally validated a multi-omics model integrating pre-NAT clinical data, DCE-MRI images, and medical reports to predict pathologic complete response (pCR) and likelihood of survival after NAT. The prognostic scores provided by the response model can select populations with relatively poor outcomes after treatment according to the factual regimen, which may provide a basis for personalized NAT regimen recommendations, potentially reducing inefficiency or overtreatment by moving beyond selection solely based on cancer stage and subtype.
Start by installing conda environment, then clone this repository and install the dependencies.
conda create -n morm python=3.11
conda activate morm
pip install torch torchvision torchaudio
git clone https://github.com/fiy2W/MORM.git
cd morm
pip install -r requirements.txtWe use contrastive language-image pretraining (CLIP) to align MRI images and medical reports.
python src/train/pretrain_clip.py -c config/config.yaml -d cudaTrain PoE model with five-fold cross validation.
python src/train/train_vae_poe.py -c config/config.yaml -d cuda -f 0
python src/train/train_vae_poe.py -c config/config.yaml -d cuda -f 1
python src/train/train_vae_poe.py -c config/config.yaml -d cuda -f 2
python src/train/train_vae_poe.py -c config/config.yaml -d cuda -f 3
python src/train/train_vae_poe.py -c config/config.yaml -d cuda -f 4Test model for pCR prediction and survival analysis.
python src/test/test_vae_poe_pcr.py -c config/config.yaml -d cuda
python src/test/test_vae_poe_followup.py -c config/config.yaml -d cudaFor any code-related problems or questions please open an issue or concat us by emails.
- [email protected] (Ritse Mann)
- [email protected] (Tao Tan)
- [email protected] (Luyi Han)


