Skip to content

[BUG] materialize_features fails with some combinations of features #920

@loomlike

Description

@loomlike

Willingness to contribute

No. I cannot contribute a bug fix at this time.

Feathr version

0.9.0

System information

  • OS Platform and Distribution (e.g., Linux Ubuntu 20.0): Ubuntu 20.0
  • Python version: 3.10
  • Spark version, if reporting runtime issue: 3.2.x and 3.3.1

Describe the problem

Materialize job fails on some combinations of features, throwing following errors:

Caused by: java.lang.NullPointerException
        at com.linkedin.feathr.common.types.protobuf.FeatureValueOuterClass$FeatureValue$Builder.setStringValue(FeatureValueOuterClass.java:1728)
        at com.linkedin.feathr.offline.generation.outputProcessor.RedisOutputUtils$.$anonfun$getConversionFunction$4(RedisOutputUtils.scala:110)
        at com.linkedin.feathr.offline.generation.outputProcessor.RedisOutputUtils$.$anonfun$encodeDataFrame$2(RedisOutputUtils.scala:51)
        at com.linkedin.feathr.offline.generation.outputProcessor.RedisOutputUtils$.$anonfun$encodeDataFrame$2$adapted(RedisOutputUtils.scala:48)
        at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286)
        at scala.collection.immutable.Range.foreach(Range.scala:158)
        at scala.collection.TraversableLike.map(TraversableLike.scala:286)
        at scala.collection.TraversableLike.map$(TraversableLike.scala:279)
        at scala.collection.AbstractTraversable.map(Traversable.scala:108)
        at com.linkedin.feathr.offline.generation.outputProcessor.RedisOutputUtils$.$anonfun$encodeDataFrame$1(RedisOutputUtils.scala:48)

Tracking information

No response

Code to reproduce bug

# anchored feature
Feature(
        name="account_country",
        key=account_id,
        feature_type=STRING, 
        transform="accountCountry",
    ),
...

# average amount of transaction in that week
avg_transaction_amount = Feature(
    name="avg_transaction_amount",
    key=account_id,
    feature_type=FLOAT,
    transform=WindowAggTransformation(
        agg_expr="cast_float(transactionAmount)", agg_func="AVG", window="7d"
    ),
)
...

client.materialize_features(
    MaterializationSettings(
        ACCOUNT_FEATURE_TABLE_NAME,
        backfill_time=backfill_time,
        sinks=[RedisSink(table_name=ACCOUNT_FEATURE_TABLE_NAME)],
        feature_names=["account_country", "avg_transaction_amount"],
    ),
    allow_materialize_non_agg_feature=True,
)

feature_names=["account_country"], feature_names=["avg_transaction_amount"], and other combinations like ['account_country', 'num_transaction_count_in_day'] work without errors.

Only ["account_country", "avg_transaction_amount"] this combination fails.

What component(s) does this bug affect?

  • Python Client: This is the client users use to interact with most of our API. Mostly written in Python.
  • Computation Engine: The computation engine that execute the actual feature join and generation work. Mostly in Scala and Spark.
  • Feature Registry API: The frontend API layer supports SQL, Purview(Atlas) as storage. The API layer is in Python(FAST API)
  • Feature Registry Web UI: The Web UI for feature registry. Written in React

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workinggood first issueGood for newcomers

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions