Omni-Supervised Efficient ConvNet for Robust Semantic Segmentation
Download Link, 600 images
Download Link, 600 Images
Training:
CUDA_VISIBLE_DEVICES=0,1,2,3
python3 segment.py
--basedir /home/kyang/Downloads/
--num-epochs 200
--batch-size 12
--savedir /erfpsp
--datasets 'MAP' 'IDD20K'
--num-samples 18000
--alpha 0
--beta 0
--model erfnet_pspnet
Evaluation:
python3 eval_color.py
--datadir /home/kyang/Downloads/Mapillary/
--subset val
--loadDir ./trained/
--loadWeights model_best.pth
--loadModel erfnet_pspnet.py
--basedir /home/kyang/Downloads/
--datasets 'MAP' 'IDD20K'
If you use our dataset or code, please consider referencing any of the following papers:
In Defense of Multi-Source Omni-Supervised Efficient ConvNet for Robust Semantic Segmentation in Heterogeneous Unseen Domains. K. Yang, X. Hu, K. Wang, R. Stiefelhagen. In IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, United States (Virtual), October 2020. [PDF]
Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation. K. Yang, K. Wang, L.M. Bergasa, E. Romera, W. Hu, D. Sun, J. Sun, R. Cheng, T. Chen, E. López. Sensors, May 2018. [PDF]
