[Website] [arXiv] [OpenReview]
-
Install the following libraries:
sudo apt update sudo apt install libosmesa6-dev libgl1-mesa-glx libglfw3 -
Install other dependencies:
conda env create -f conda_env.yml conda activate ads
- You can download the expert demonstrations used in our experiments from this link or generate new demonstrations through
metaworld_generate_expert/generate_demo.py. Then place theexpert_demosfolder in${root_dir}/IL. - Run experiments by the following command:
The hyperparameter
python train.py agent=ot suite=metaworld obs_type=pixels suite/metaworld_task=hammer num_demos=10 seed=1 suite.num_train_frames=2000000 adaptive_discount=trueadaptive_discountcontrols whether to use Automatic Discount Scheduling.
Please use the following bibtex for citations:
@inproceedings{liu2024imitation, title={Imitation Learning from Observation with Automatic Discount Scheduling},
author={Yuyang Liu and Weijun Dong and Yingdong Hu and Chuan Wen and Zhao-Heng Yin and Chongjie Zhang and Yang Gao},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=pPJTQYOpNI}
}
This codebase is built upon the ROT codebase. The test environments are from Meta-World.