-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathMath.cs
1711 lines (1471 loc) · 56.3 KB
/
Math.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// ===================================================================================================
// Portions of the code implemented below are based on the 'Berkeley SoftFloat Release 3e' algorithms.
// ===================================================================================================
using System.Diagnostics;
using System.Diagnostics.CodeAnalysis;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.Arm;
using System.Runtime.Intrinsics.X86;
using System.Runtime.Versioning;
namespace System
{
/// <summary>
/// Provides constants and static methods for trigonometric, logarithmic, and other common mathematical functions.
/// </summary>
public static partial class Math
{
public const double E = 2.7182818284590452354;
public const double PI = 3.14159265358979323846;
public const double Tau = 6.283185307179586476925;
private const int maxRoundingDigits = 15;
private const double doubleRoundLimit = 1e16d;
// This table is required for the Round function which can specify the number of digits to round to
private static ReadOnlySpan<double> RoundPower10Double =>
[
1E0, 1E1, 1E2, 1E3, 1E4, 1E5, 1E6, 1E7, 1E8,
1E9, 1E10, 1E11, 1E12, 1E13, 1E14, 1E15
];
private const double SCALEB_C1 = 8.98846567431158E+307; // 0x1p1023
private const double SCALEB_C2 = 2.2250738585072014E-308; // 0x1p-1022
private const double SCALEB_C3 = 9007199254740992; // 0x1p53
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static short Abs(short value)
{
if (value < 0)
{
value = (short)-value;
if (value < 0)
{
ThrowNegateTwosCompOverflow();
}
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Abs(int value)
{
if (value < 0)
{
value = -value;
if (value < 0)
{
ThrowNegateTwosCompOverflow();
}
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static long Abs(long value)
{
if (value < 0)
{
value = -value;
if (value < 0)
{
ThrowNegateTwosCompOverflow();
}
}
return value;
}
/// <summary>Returns the absolute value of a native signed integer.</summary>
/// <param name="value">A number that is greater than <see cref="IntPtr.MinValue" />, but less than or equal to <see cref="IntPtr.MaxValue" />.</param>
/// <returns>A native signed integer, x, such that 0 \u2264 x \u2264 <see cref="IntPtr.MaxValue" />.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static nint Abs(nint value)
{
if (value < 0)
{
value = -value;
if (value < 0)
{
ThrowNegateTwosCompOverflow();
}
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
[CLSCompliant(false)]
public static sbyte Abs(sbyte value)
{
if (value < 0)
{
value = (sbyte)-value;
if (value < 0)
{
ThrowNegateTwosCompOverflow();
}
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static decimal Abs(decimal value)
{
return decimal.Abs(value);
}
[Intrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Abs(double value)
{
const ulong mask = 0x7FFFFFFFFFFFFFFF;
ulong raw = BitConverter.DoubleToUInt64Bits(value);
return BitConverter.UInt64BitsToDouble(raw & mask);
}
[Intrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Abs(float value)
{
const uint mask = 0x7FFFFFFF;
uint raw = BitConverter.SingleToUInt32Bits(value);
return BitConverter.UInt32BitsToSingle(raw & mask);
}
[DoesNotReturn]
[StackTraceHidden]
internal static void ThrowNegateTwosCompOverflow()
{
throw new OverflowException(SR.Overflow_NegateTwosCompNum);
}
/// <summary>Produces the full product of two unsigned 32-bit numbers.</summary>
/// <param name="a">The first number to multiply.</param>
/// <param name="b">The second number to multiply.</param>
/// <returns>The number containing the product of the specified numbers.</returns>
[CLSCompliant(false)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static unsafe ulong BigMul(uint a, uint b)
{
#if false // TARGET_32BIT
// This generates slower code currently than the simple multiplication
// https://github.com/dotnet/runtime/issues/11782
if (Bmi2.IsSupported)
{
uint low;
uint high = Bmi2.MultiplyNoFlags(a, b, &low);
return ((ulong)high << 32) | low;
}
#endif
return ((ulong)a) * b;
}
/// <summary>Produces the full product of two 32-bit numbers.</summary>
/// <param name="a">The first number to multiply.</param>
/// <param name="b">The second number to multiply.</param>
/// <returns>The number containing the product of the specified numbers.</returns>
public static long BigMul(int a, int b)
{
return ((long)a) * b;
}
/// <summary>
/// Perform multiplication between 64 and 32 bit numbers, returning lower 64 bits in <paramref name="low"/>
/// </summary>
/// <returns>hi bits of the result</returns>
/// <remarks>REMOVE once BigMul(ulong, ulong) is treated as intrinsics and optimizes 32 by 64 multiplications</remarks>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal static ulong BigMul(ulong a, uint b, out ulong low)
{
#if TARGET_64BIT
return Math.BigMul((ulong)a, (ulong)b, out low);
#else
ulong prodL = ((ulong)(uint)a) * b;
ulong prodH = (prodL >> 32) + (((ulong)(uint)(a >> 32)) * b);
low = ((prodH << 32) | (uint)prodL);
return (prodH >> 32);
#endif
}
/// <inheritdoc cref="BigMul(ulong, uint, out ulong)"/>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal static ulong BigMul(uint a, ulong b, out ulong low)
=> BigMul(b, a, out low);
/// <summary>Produces the full product of two unsigned 64-bit numbers.</summary>
/// <param name="a">The first number to multiply.</param>
/// <param name="b">The second number to multiply.</param>
/// <param name="low">The low 64-bit of the product of the specified numbers.</param>
/// <returns>The high 64-bit of the product of the specified numbers.</returns>
[CLSCompliant(false)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static unsafe ulong BigMul(ulong a, ulong b, out ulong low)
{
if (Bmi2.X64.IsSupported)
{
ulong tmp;
ulong high = Bmi2.X64.MultiplyNoFlags(a, b, &tmp);
low = tmp;
return high;
}
else if (ArmBase.Arm64.IsSupported)
{
low = a * b;
return ArmBase.Arm64.MultiplyHigh(a, b);
}
return SoftwareFallback(a, b, out low);
static ulong SoftwareFallback(ulong a, ulong b, out ulong low)
{
// Adaptation of algorithm for multiplication
// of 32-bit unsigned integers described
// in Hacker's Delight by Henry S. Warren, Jr. (ISBN 0-201-91465-4), Chapter 8
// Basically, it's an optimized version of FOIL method applied to
// low and high dwords of each operand
// Use 32-bit uints to optimize the fallback for 32-bit platforms.
uint al = (uint)a;
uint ah = (uint)(a >> 32);
uint bl = (uint)b;
uint bh = (uint)(b >> 32);
ulong mull = ((ulong)al) * bl;
ulong t = ((ulong)ah) * bl + (mull >> 32);
ulong tl = ((ulong)al) * bh + (uint)t;
low = tl << 32 | (uint)mull;
return ((ulong)ah) * bh + (t >> 32) + (tl >> 32);
}
}
/// <summary>Produces the full product of two 64-bit numbers.</summary>
/// <param name="a">The first number to multiply.</param>
/// <param name="b">The second number to multiply.</param>
/// <param name="low">The low 64-bit of the product of the specified numbers.</param>
/// <returns>The high 64-bit of the product of the specified numbers.</returns>
public static long BigMul(long a, long b, out long low)
{
if (ArmBase.Arm64.IsSupported)
{
low = a * b;
return ArmBase.Arm64.MultiplyHigh(a, b);
}
ulong high = BigMul((ulong)a, (ulong)b, out ulong ulow);
low = (long)ulow;
return (long)high - ((a >> 63) & b) - ((b >> 63) & a);
}
/// <summary>Produces the full product of two unsigned 64-bit numbers.</summary>
/// <param name="a">The first number to multiply.</param>
/// <param name="b">The second number to multiply.</param>
/// <returns>The full product of the specified numbers.</returns>
[CLSCompliant(false)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static UInt128 BigMul(ulong a, ulong b)
{
ulong high = BigMul(a, b, out ulong low);
return new UInt128(high, low);
}
/// <summary>Produces the full product of two 64-bit numbers.</summary>
/// <param name="a">The first number to multiply.</param>
/// <param name="b">The second number to multiply.</param>
/// <returns>The full product of the specified numbers.</returns>
public static Int128 BigMul(long a, long b)
{
long high = BigMul(a, b, out long low);
return new Int128((ulong)high, (ulong)low);
}
public static double BitDecrement(double x)
{
ulong bits = BitConverter.DoubleToUInt64Bits(x);
if (!double.IsFinite(x))
{
// NaN returns NaN
// -Infinity returns -Infinity
// +Infinity returns MaxValue
return (bits == double.PositiveInfinityBits) ? double.MaxValue : x;
}
if (bits == double.PositiveZeroBits)
{
// +0.0 returns -double.Epsilon
return -double.Epsilon;
}
// Negative values need to be incremented
// Positive values need to be decremented
if (double.IsNegative(x))
{
bits += 1;
}
else
{
bits -= 1;
}
return BitConverter.UInt64BitsToDouble(bits);
}
public static double BitIncrement(double x)
{
ulong bits = BitConverter.DoubleToUInt64Bits(x);
if (!double.IsFinite(x))
{
// NaN returns NaN
// -Infinity returns MinValue
// +Infinity returns +Infinity
return (bits == double.NegativeInfinityBits) ? double.MinValue : x;
}
if (bits == double.NegativeZeroBits)
{
// -0.0 returns Epsilon
return double.Epsilon;
}
// Negative values need to be decremented
// Positive values need to be incremented
if (double.IsNegative(x))
{
bits -= 1;
}
else
{
bits += 1;
}
return BitConverter.UInt64BitsToDouble(bits);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double CopySign(double x, double y)
{
if (Vector128.IsHardwareAccelerated)
{
return Vector128.ConditionalSelect(Vector128.CreateScalarUnsafe(-0.0), Vector128.CreateScalarUnsafe(y), Vector128.CreateScalarUnsafe(x)).ToScalar();
}
else
{
return SoftwareFallback(x, y);
}
static double SoftwareFallback(double x, double y)
{
// This method is required to work for all inputs,
// including NaN, so we operate on the raw bits.
ulong xbits = BitConverter.DoubleToUInt64Bits(x);
ulong ybits = BitConverter.DoubleToUInt64Bits(y);
// Remove the sign from x, and remove everything but the sign from y
// Then, simply OR them to get the correct sign
return BitConverter.UInt64BitsToDouble((xbits & ~double.SignMask) | (ybits & double.SignMask));
}
}
public static int DivRem(int a, int b, out int result)
{
// TODO https://github.com/dotnet/runtime/issues/5213:
// Restore to using % and / when the JIT is able to eliminate one of the idivs.
// In the meantime, a * and - is measurably faster than an extra /.
int div = a / b;
result = a - (div * b);
return div;
}
public static long DivRem(long a, long b, out long result)
{
long div = a / b;
result = a - (div * b);
return div;
}
/// <summary>Produces the quotient and the remainder of two signed 8-bit numbers.</summary>
/// <param name="left">The dividend.</param>
/// <param name="right">The divisor.</param>
/// <returns>The quotient and the remainder of the specified numbers.</returns>
[NonVersionable]
[CLSCompliant(false)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static (sbyte Quotient, sbyte Remainder) DivRem(sbyte left, sbyte right)
{
sbyte quotient = (sbyte)(left / right);
return (quotient, (sbyte)(left - (quotient * right)));
}
/// <summary>Produces the quotient and the remainder of two unsigned 8-bit numbers.</summary>
/// <param name="left">The dividend.</param>
/// <param name="right">The divisor.</param>
/// <returns>The quotient and the remainder of the specified numbers.</returns>
[NonVersionable]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static (byte Quotient, byte Remainder) DivRem(byte left, byte right)
{
byte quotient = (byte)(left / right);
return (quotient, (byte)(left - (quotient * right)));
}
/// <summary>Produces the quotient and the remainder of two signed 16-bit numbers.</summary>
/// <param name="left">The dividend.</param>
/// <param name="right">The divisor.</param>
/// <returns>The quotient and the remainder of the specified numbers.</returns>
[NonVersionable]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static (short Quotient, short Remainder) DivRem(short left, short right)
{
short quotient = (short)(left / right);
return (quotient, (short)(left - (quotient * right)));
}
/// <summary>Produces the quotient and the remainder of two unsigned 16-bit numbers.</summary>
/// <param name="left">The dividend.</param>
/// <param name="right">The divisor.</param>
/// <returns>The quotient and the remainder of the specified numbers.</returns>
[NonVersionable]
[CLSCompliant(false)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static (ushort Quotient, ushort Remainder) DivRem(ushort left, ushort right)
{
ushort quotient = (ushort)(left / right);
return (quotient, (ushort)(left - (quotient * right)));
}
/// <summary>Produces the quotient and the remainder of two signed 32-bit numbers.</summary>
/// <param name="left">The dividend.</param>
/// <param name="right">The divisor.</param>
/// <returns>The quotient and the remainder of the specified numbers.</returns>
[NonVersionable]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static (int Quotient, int Remainder) DivRem(int left, int right)
{
int quotient = left / right;
return (quotient, left - (quotient * right));
}
/// <summary>Produces the quotient and the remainder of two unsigned 32-bit numbers.</summary>
/// <param name="left">The dividend.</param>
/// <param name="right">The divisor.</param>
/// <returns>The quotient and the remainder of the specified numbers.</returns>
[NonVersionable]
[CLSCompliant(false)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static (uint Quotient, uint Remainder) DivRem(uint left, uint right)
{
uint quotient = left / right;
return (quotient, left - (quotient * right));
}
/// <summary>Produces the quotient and the remainder of two signed 64-bit numbers.</summary>
/// <param name="left">The dividend.</param>
/// <param name="right">The divisor.</param>
/// <returns>The quotient and the remainder of the specified numbers.</returns>
[NonVersionable]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static (long Quotient, long Remainder) DivRem(long left, long right)
{
long quotient = left / right;
return (quotient, left - (quotient * right));
}
/// <summary>Produces the quotient and the remainder of two unsigned 64-bit numbers.</summary>
/// <param name="left">The dividend.</param>
/// <param name="right">The divisor.</param>
/// <returns>The quotient and the remainder of the specified numbers.</returns>
[NonVersionable]
[CLSCompliant(false)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static (ulong Quotient, ulong Remainder) DivRem(ulong left, ulong right)
{
ulong quotient = left / right;
return (quotient, left - (quotient * right));
}
/// <summary>Produces the quotient and the remainder of two signed native-size numbers.</summary>
/// <param name="left">The dividend.</param>
/// <param name="right">The divisor.</param>
/// <returns>The quotient and the remainder of the specified numbers.</returns>
[NonVersionable]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static (nint Quotient, nint Remainder) DivRem(nint left, nint right)
{
nint quotient = left / right;
return (quotient, left - (quotient * right));
}
/// <summary>Produces the quotient and the remainder of two unsigned native-size numbers.</summary>
/// <param name="left">The dividend.</param>
/// <param name="right">The divisor.</param>
/// <returns>The quotient and the remainder of the specified numbers.</returns>
[NonVersionable]
[CLSCompliant(false)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static (nuint Quotient, nuint Remainder) DivRem(nuint left, nuint right)
{
nuint quotient = left / right;
return (quotient, left - (quotient * right));
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static decimal Ceiling(decimal d)
{
return decimal.Ceiling(d);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static byte Clamp(byte value, byte min, byte max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static decimal Clamp(decimal value, decimal min, decimal max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Clamp(double value, double min, double max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static short Clamp(short value, short min, short max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Clamp(int value, int min, int max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static long Clamp(long value, long min, long max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
/// <summary>Returns <paramref name="value" /> clamped to the inclusive range of <paramref name="min" /> and <paramref name="max" />.</summary>
/// <param name="value">The value to be clamped.</param>
/// <param name="min">The lower bound of the result.</param>
/// <param name="max">The upper bound of the result.</param>
/// <returns>
/// <paramref name="value" /> if <paramref name="min" /> \u2264 <paramref name="value" /> \u2264 <paramref name="max" />.
///
/// -or-
///
/// <paramref name="min" /> if <paramref name="value" /> < <paramref name="min" />.
///
/// -or-
///
/// <paramref name="max" /> if <paramref name="max" /> < <paramref name="value" />.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static nint Clamp(nint value, nint min, nint max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
[CLSCompliant(false)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static sbyte Clamp(sbyte value, sbyte min, sbyte max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float Clamp(float value, float min, float max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
[CLSCompliant(false)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static ushort Clamp(ushort value, ushort min, ushort max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
[CLSCompliant(false)]
public static uint Clamp(uint value, uint min, uint max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
[CLSCompliant(false)]
public static ulong Clamp(ulong value, ulong min, ulong max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
/// <summary>Returns <paramref name="value" /> clamped to the inclusive range of <paramref name="min" /> and <paramref name="max" />.</summary>
/// <param name="value">The value to be clamped.</param>
/// <param name="min">The lower bound of the result.</param>
/// <param name="max">The upper bound of the result.</param>
/// <returns>
/// <paramref name="value" /> if <paramref name="min" /> \u2264 <paramref name="value" /> \u2264 <paramref name="max" />.
///
/// -or-
///
/// <paramref name="min" /> if <paramref name="value" /> < <paramref name="min" />.
///
/// -or-
///
/// <paramref name="max" /> if <paramref name="max" /> < <paramref name="value" />.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
[CLSCompliant(false)]
public static nuint Clamp(nuint value, nuint min, nuint max)
{
if (min > max)
{
ThrowMinMaxException(min, max);
}
if (value < min)
{
return min;
}
else if (value > max)
{
return max;
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static decimal Floor(decimal d)
{
return decimal.Floor(d);
}
public static double IEEERemainder(double x, double y)
{
if (double.IsNaN(x))
{
return x; // IEEE 754-2008: NaN payload must be preserved
}
if (double.IsNaN(y))
{
return y; // IEEE 754-2008: NaN payload must be preserved
}
double regularMod = x % y;
if (double.IsNaN(regularMod))
{
return double.NaN;
}
if ((regularMod == 0) && double.IsNegative(x))
{
return double.NegativeZero;
}
double alternativeResult = (regularMod - (Abs(y) * Sign(x)));
if (Abs(alternativeResult) == Abs(regularMod))
{
double divisionResult = x / y;
double roundedResult = Round(divisionResult);
if (Abs(roundedResult) > Abs(divisionResult))
{
return alternativeResult;
}
else
{
return regularMod;
}
}
if (Abs(alternativeResult) < Abs(regularMod))
{
return alternativeResult;
}
else
{
return regularMod;
}
}
public static int ILogB(double x)
{
// This code is based on `ilogb` from amd/aocl-libm-ose
// Copyright (C) 2008-2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Licensed under the BSD 3-Clause "New" or "Revised" License
// See THIRD-PARTY-NOTICES.TXT for the full license text
if (!double.IsNormal(x)) // x is zero, subnormal, infinity, or NaN
{
if (double.IsZero(x))
{
return int.MinValue;
}
if (!double.IsFinite(x)) // infinity or NaN
{
return int.MaxValue;
}
Debug.Assert(double.IsSubnormal(x));
return double.MinExponent - (BitOperations.TrailingZeroCount(x.TrailingSignificand) - double.BiasedExponentLength);
}
return x.Exponent;
}
public static double Log(double a, double newBase)
{
if (double.IsNaN(a))
{
return a; // IEEE 754-2008: NaN payload must be preserved
}
if (double.IsNaN(newBase))
{
return newBase; // IEEE 754-2008: NaN payload must be preserved
}
if (newBase == 1)
{
return double.NaN;
}
if ((a != 1) && ((newBase == 0) || double.IsPositiveInfinity(newBase)))
{
return double.NaN;
}
return Log(a) / Log(newBase);
}
[NonVersionable]
public static byte Max(byte val1, byte val2)
{
return (val1 >= val2) ? val1 : val2;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static decimal Max(decimal val1, decimal val2)
{
return decimal.Max(val1, val2);
}
[Intrinsic]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static double Max(double val1, double val2)
{
// This matches the IEEE 754:2019 `maximum` function
//
// It propagates NaN inputs back to the caller and
// otherwise returns the greater of the inputs. It
// treats +0 as greater than -0 as per the specification.
if (val1 != val2)
{
if (!double.IsNaN(val1))
{
return val2 < val1 ? val1 : val2;
}
return val1;
}
return double.IsNegative(val2) ? val1 : val2;
}
[NonVersionable]
public static short Max(short val1, short val2)
{
return (val1 >= val2) ? val1 : val2;
}
[NonVersionable]
public static int Max(int val1, int val2)
{
return (val1 >= val2) ? val1 : val2;
}
[NonVersionable]
public static long Max(long val1, long val2)
{
return (val1 >= val2) ? val1 : val2;
}
/// <summary>Returns the larger of two native signed integers.</summary>
/// <param name="val1">The first of two native signed integers to compare.</param>
/// <param name="val2">The second of two native signed integers to compare.</param>
/// <returns>Parameter <paramref name="val1" /> or <paramref name="val2" />, whichever is larger.</returns>
[NonVersionable]
public static nint Max(nint val1, nint val2)
{
return (val1 >= val2) ? val1 : val2;
}