A PyTorch implementation for dense UVW coordinate prediction from human head images using a DINOv3 backbone and a DPT-style head architecture.
DenseMarks predicts per-pixel positions in the canonical space (cube
- Input: RGB image of size 512×512
- Output: UVW coordinate tensor
(B, 3, 512, 512)with values in[0, 1]
DenseMarks currently supports inference only — you can run the model to generate dense UVW predictions from input images.
🧠 Training support is coming soon! Stay tuned :)
- Python 3.8+
- PyTorch 1.12+
- CUDA (optional, for GPU acceleration)
-
Clone the repository:
git clone https://github.com/diddone/densemarks.git cd densemarks -
Install DINOv3 submodule:
git clone https://github.com/facebookresearch/dinov3 third_party_dinov3
-
Modify DINOv3 for compatibility:
# For Linux (GNU sed): sed -i '/dinov3\.hub\.segmentors/s/^/#/; /dinov3\.hub\.classifiers/s/^/#/; /dinov3\.hub\.detectors/s/^/#/; /dinov3\.hub\.dinotxt/s/^/#/; /dinov3\.hub\.depthers/s/^/#/' third_party_dinov3/hubconf.py # For macOS (BSD sed): sed -i '' '/dinov3\.hub\.segmentors/s/^/#/; /dinov3\.hub\.classifiers/s/^/#/; /dinov3\.hub\.detectors/s/^/#/; /dinov3\.hub\.dinotxt/s/^/#/; /dinov3\.hub\.depthers/s/^/#/' third_party_dinov3/hubconf.py
-
Install dependencies:
pip install torch transformers numpy
-
Download model weights from Hugging Face:
from dense_marks_model import DenseMarksModel, read_image from huggingface_hub import hf_hub_download model = DenseMarksModel(hf_hub_download("diddone/densemarks", "model.safetensors")) images = read_image("assets/00000.png") # rgb, 512x512 uvw = model(images) # Predict UVW coordinates