Skip to content

diddone/densemarks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DenseMarks

A PyTorch implementation for dense UVW coordinate prediction from human head images using a DINOv3 backbone and a DPT-style head architecture.

Project Page YouTube

Overview

DenseMarks predicts per-pixel positions in the canonical space (cube $[0, 1] ^ 3$) from human head images.

  • Input: RGB image of size 512×512
  • Output: UVW coordinate tensor (B, 3, 512, 512) with values in [0, 1]

🚀 Current Status

DenseMarks currently supports inference only — you can run the model to generate dense UVW predictions from input images.
🧠 Training support is coming soon! Stay tuned :)


Prerequisites

  • Python 3.8+
  • PyTorch 1.12+
  • CUDA (optional, for GPU acceleration)

Installation

  1. Clone the repository:

    git clone https://github.com/diddone/densemarks.git
    cd densemarks
  2. Install DINOv3 submodule:

    git clone https://github.com/facebookresearch/dinov3 third_party_dinov3
  3. Modify DINOv3 for compatibility:

    # For Linux (GNU sed):
    sed -i '/dinov3\.hub\.segmentors/s/^/#/; /dinov3\.hub\.classifiers/s/^/#/; /dinov3\.hub\.detectors/s/^/#/; /dinov3\.hub\.dinotxt/s/^/#/; /dinov3\.hub\.depthers/s/^/#/' third_party_dinov3/hubconf.py
    
    # For macOS (BSD sed):
    sed -i '' '/dinov3\.hub\.segmentors/s/^/#/; /dinov3\.hub\.classifiers/s/^/#/; /dinov3\.hub\.detectors/s/^/#/; /dinov3\.hub\.dinotxt/s/^/#/; /dinov3\.hub\.depthers/s/^/#/' third_party_dinov3/hubconf.py
  4. Install dependencies:

    pip install torch transformers numpy
  5. Download model weights from Hugging Face:

    from dense_marks_model import DenseMarksModel, read_image
    from huggingface_hub import hf_hub_download
    model = DenseMarksModel(hf_hub_download("diddone/densemarks", "model.safetensors"))
    images = read_image("assets/00000.png") # rgb, 512x512
    uvw = model(images) # Predict UVW coordinates

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages