Running MT model
-
Clone the
mainbranch -
Install dependencies
!pip install pytorch_lightning --upgrade !pip install torchmetrics==0.7 !pip install hydra-core --upgrade !pip install hydra_colorlog --upgrade !pip install shortuuid !pip install tqdm !pip install pandas !pip install transformers !pip install psutil !pip install einops !pip install wandb
-
Change the directory to TEMOS
%cd '<dir_path>/asymov/packages/TEMOS'
-
Test training code on tiny dataset
!HYDRA_FULL_ERROR=1 python train_asymov_mt.py experiment=<exp name> user=<shared, darsh etc.> data.splitpath='${path.datasets}/kit-splits-tiny' num_mw_clusters=1000 trainer=<cpu, gpu> trainer.max_epochs=10 model.max_frames=100 model.metrics.recons_types=['naive'] viz_metrics_start_epoch=0 viz_metrics_every_n_epoch=3 -
Run training code
!HYDRA_FULL_ERROR=1 python train_asymov_mt.py experiment=<exp name> run_id=<optional> user=<shared, darsh etc.> num_mw_clusters=1000 trainer=gpu model.max_frames=1000 model.metrics.recons_types=['naive', 'naive_no_rep']other options that might be helpful:
path.code_dir=<> hydra.run.dir=<> trainer.max_epochs=<> viz_metrics_start_epoch=<> viz_metrics_every_n_epoch=<> callback.last_ckpt.every_n_epochs=<> callback.viz_ckpt.start_epoch=<> callback.viz_ckpt.every_n_epochs=<>
```