Jifeng Wang1
Kaouther Messaoud2
Yuejiang Liu3
Juergen Gall1
Alexandre Alahi2
1University of Bonn 2EPFL 3 Stanford University
- Our method makes full use of the pretrained encoder and decoder, with simple yet effective PEFT design.
- Forecast-PEFT archives higher accuracy with only 17% tunable parameters.
- Forecast-FT, our fully fine-tuned variant, demonstrates up to a 9.6% enhancement over the baseline.
1. Clone this repository:
git clone https://github.com/csjfwang/Forecast-PEFT.git
cd forecast-peft
2. Setup conda environment:
conda create -n forecast_peft python=3.8
conda activate forecast_peft
sh ./scripts/setup.sh
3. Prepare Argoverse 2 Motion Dataset: we use the same preprocessing as Forecast-MAE.
1. Pre-training (Optional, our pretrained_weights: download)
python3 train.py data_root=/path/to/data_root model=model_mae gpus=4 batch_size=32
python3 train.py data_root=/path/to/data_root model=model_forecast_peft gpus=4 batch_size=32 monitor=val_minFDE6 'pretrained_weights="/path/to/pretrain_ckpt"'
python3 train.py data_root=/path/to/data_root model=model_forecast_ft gpus=4 batch_size=32 monitor=val_minFDE6 'pretrained_weights="/path/to/pretrain_ckpt"'
@article{Wang2024ForecastPEFTPF,
title={Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models},
author={Jifeng Wang and Kaouther Messaoud and Yuejiang Liu and Juergen Gall and Alexandre Alahi},
year={2024},
journal={arXiv preprint arXiv:2407.19564},
}This repo is developed based on Forecast-MAE, thanks for their great work. Please also consider citing:
@article{cheng2023forecast,
title={{Forecast-MAE}: Self-supervised Pre-training for Motion Forecasting with Masked Autoencoders},
author={Cheng, Jie and Mei, Xiaodong and Liu, Ming},
journal={Proceedings of the IEEE/CVF International Conference on Computer Vision},
year={2023}
}