1818 */
1919
2020/* !
21- * \file elemwise_unary_op .cc
21+ * \file elemwise_unary_op_basic .cc
2222 * \brief CPU Implementation of unary function.
2323 */
2424#include < mxnet/base.h>
@@ -419,7 +419,7 @@ The storage type of ``trunc`` output depends upon the input storage type:
419419// fix
420420MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE (fix, cpu, mshadow_op::fix)
421421MXNET_ADD_SPARSE_OP_ALIAS (fix)
422- .describe(R"code( Returns element-wise rounded value to the nearest \
422+ .describe(R"code( Returns element-wise rounded value to the nearest \
423423integer towards zero of the input.
424424
425425Example::
@@ -436,7 +436,7 @@ The storage type of ``fix`` output depends upon the input storage type:
436436// square
437437MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE (square, cpu, mshadow_op::square)
438438MXNET_ADD_SPARSE_OP_ALIAS (square)
439- .describe(R"code( Returns element-wise squared value of the input.
439+ .describe(R"code( Returns element-wise squared value of the input.
440440
441441.. math::
442442 square(x) = x^2
@@ -452,15 +452,15 @@ The storage type of ``square`` output depends upon the input storage type:
452452 - square(csr) = csr
453453
454454)code" ADD_FILELINE)
455- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_square" });
455+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_square" });
456456
457457MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU (_backward_square,
458458 unary_bwd<mshadow_op::square_grad>);
459459
460460// sqrt
461461MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE (sqrt, cpu, mshadow_op::square_root)
462462MXNET_ADD_SPARSE_OP_ALIAS (sqrt)
463- .describe(R"code( Returns element-wise square-root value of the input.
463+ .describe(R"code( Returns element-wise square-root value of the input.
464464
465465.. math::
466466 \textrm{sqrt}(x) = \sqrt{x}
@@ -475,15 +475,15 @@ The storage type of ``sqrt`` output depends upon the input storage type:
475475 - sqrt(row_sparse) = row_sparse
476476
477477)code" ADD_FILELINE)
478- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseOut{" _backward_sqrt" });
478+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseOut{" _backward_sqrt" });
479479
480480MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR (_backward_sqrt,
481481 unary_bwd<mshadow_op::square_root_grad>);
482482
483483// rsqrt
484484MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE_DR (rsqrt, cpu, mshadow_op::reciprocal_square_root)
485485MXNET_ADD_SPARSE_OP_ALIAS (rsqrt)
486- .describe(R"code( Returns element-wise inverse square-root value of the input.
486+ .describe(R"code( Returns element-wise inverse square-root value of the input.
487487
488488.. math::
489489 rsqrt(x) = 1/\sqrt{x}
@@ -495,14 +495,14 @@ Example::
495495The storage type of ``rsqrt`` output is always dense
496496
497497)code" ADD_FILELINE)
498- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_rsqrt" });
498+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_rsqrt" });
499499
500- MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR (_backward_rsqrt,
501- unary_bwd<mshadow_op::reciprocal_square_root_grad>);
500+ MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR (
501+ _backward_rsqrt, unary_bwd<mshadow_op::reciprocal_square_root_grad>);
502502
503503// cbrt
504504MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE (cbrt, cpu, mshadow_op::cube_root)
505- .describe(R"code( Returns element-wise cube-root value of the input.
505+ .describe(R"code( Returns element-wise cube-root value of the input.
506506
507507.. math::
508508 cbrt(x) = \sqrt[3]{x}
@@ -512,14 +512,14 @@ Example::
512512 cbrt([1, 8, -125]) = [1, 2, -5]
513513
514514)code" ADD_FILELINE)
515- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseOut{" _backward_cbrt" });
515+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseOut{" _backward_cbrt" });
516516
517517MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR (_backward_cbrt,
518518 unary_bwd<mshadow_op::cube_root_grad>);
519519
520520// rcbrt
521521MXNET_OPERATOR_REGISTER_UNARY (rcbrt)
522- .describe(R"code( Returns element-wise inverse cube-root value of the input.
522+ .describe(R"code( Returns element-wise inverse cube-root value of the input.
523523
524524.. math::
525525 rcbrt(x) = 1/\sqrt[3]{x}
@@ -529,17 +529,18 @@ Example::
529529 rcbrt([1,8,-125]) = [1.0, 0.5, -0.2]
530530
531531)code" ADD_FILELINE)
532- .set_attr<FCompute>(" FCompute<cpu>" , UnaryOp::Compute<cpu, mshadow_op::reciprocal_cube_root>)
533- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_rcbrt" });
532+ .set_attr<FCompute>(" FCompute<cpu>" , UnaryOp::Compute<cpu, mshadow_op::reciprocal_cube_root>)
533+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_rcbrt" });
534534
535535MXNET_OPERATOR_REGISTER_BINARY (_backward_rcbrt)
536536.set_attr<FCompute>(" FCompute<cpu>" ,
537- ElemwiseBinaryOp::Compute<cpu, unary_bwd<mshadow_op::reciprocal_cube_root_grad> >);
537+ ElemwiseBinaryOp::Compute<cpu,
538+ unary_bwd<mshadow_op::reciprocal_cube_root_grad>>);
538539
539540// exp
540541MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE_DR (exp, cpu, mshadow_op::exp)
541542MXNET_ADD_SPARSE_OP_ALIAS (exp)
542- .describe(R"code( Returns element-wise exponential value of the input.
543+ .describe(R"code( Returns element-wise exponential value of the input.
543544
544545.. math::
545546 exp(x) = e^x \approx 2.718^x
@@ -551,50 +552,50 @@ Example::
551552The storage type of ``exp`` output is always dense
552553
553554)code" ADD_FILELINE)
554- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseOut{" _mul" });
555+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseOut{" _mul" });
555556
556557// log
557558MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE_DR (log, cpu, mshadow_op::log)
558559MXNET_ADD_SPARSE_OP_ALIAS (log)
559- .describe(R"code( Returns element-wise Natural logarithmic value of the input.
560+ .describe(R"code( Returns element-wise Natural logarithmic value of the input.
560561
561562The natural logarithm is logarithm in base *e*, so that ``log(exp(x)) = x``
562563
563564The storage type of ``log`` output is always dense
564565
565566)code" ADD_FILELINE)
566- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_log" });
567+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_log" });
567568
568569// log10
569570MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE_DR (log10, cpu, mshadow_op::log10)
570571MXNET_ADD_SPARSE_OP_ALIAS (log10)
571- .describe(R"code( Returns element-wise Base-10 logarithmic value of the input.
572+ .describe(R"code( Returns element-wise Base-10 logarithmic value of the input.
572573
573574``10**log10(x) = x``
574575
575576The storage type of ``log10`` output is always dense
576577
577578)code" ADD_FILELINE)
578- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_log" });
579+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_log" });
579580
580581// log2
581582MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE_DR (log2, cpu, mshadow_op::log2)
582583MXNET_ADD_SPARSE_OP_ALIAS (log2)
583- .describe(R"code( Returns element-wise Base-2 logarithmic value of the input.
584+ .describe(R"code( Returns element-wise Base-2 logarithmic value of the input.
584585
585586``2**log2(x) = x``
586587
587588The storage type of ``log2`` output is always dense
588589
589590)code" ADD_FILELINE)
590- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_log" });
591+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_log" });
591592
592593MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR (_backward_log, unary_bwd<mshadow_op::log_grad>);
593594
594595// log1p
595596MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE (log1p, cpu, mshadow_op::log1p)
596597MXNET_ADD_SPARSE_OP_ALIAS (log1p)
597- .describe(R"code( Returns element-wise ``log(1 + x)`` value of the input.
598+ .describe(R"code( Returns element-wise ``log(1 + x)`` value of the input.
598599
599600This function is more accurate than ``log(1 + x)`` for small ``x`` so that
600601:math:`1+x\approx 1`
@@ -605,15 +606,15 @@ The storage type of ``log1p`` output depends upon the input storage type:
605606 - log1p(row_sparse) = row_sparse
606607
607608)code" ADD_FILELINE)
608- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_log1p" });
609+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_log1p" });
609610
610611MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR (_backward_log1p,
611612 unary_bwd<mshadow_op::log1p_grad>);
612613
613614// expm1
614615MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE (expm1, cpu, mshadow_op::expm1)
615616MXNET_ADD_SPARSE_OP_ALIAS (expm1)
616- .describe(R"code( Returns ``exp(x) - 1`` computed element-wise on the input.
617+ .describe(R"code( Returns ``exp(x) - 1`` computed element-wise on the input.
617618
618619This function provides greater precision than ``exp(x) - 1`` for small values of ``x``.
619620
@@ -623,34 +624,34 @@ The storage type of ``expm1`` output depends upon the input storage type:
623624 - expm1(row_sparse) = row_sparse
624625
625626)code" ADD_FILELINE)
626- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_expm1" });
627+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_expm1" });
627628
628629MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR (_backward_expm1, unary_bwd<mshadow_op::exp>);
629630
630631// gamma
631632MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE_DR (gamma, cpu, mshadow_op::gamma)
632633MXNET_ADD_SPARSE_OP_ALIAS (gamma)
633- .describe(R"code( Returns the gamma function (extension of the factorial function \
634+ .describe(R"code( Returns the gamma function (extension of the factorial function \
634635to the reals), computed element-wise on the input array.
635636
636637The storage type of ``gamma`` output is always dense
637638
638639)code" )
639- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_gamma" });
640+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_gamma" });
640641
641642MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR (_backward_gamma,
642643 unary_bwd<mshadow_op::gamma_grad>);
643644
644645// gammaln
645646MXNET_OPERATOR_REGISTER_UNARY_WITH_SPARSE_DR (gammaln, cpu, mshadow_op::gammaln)
646647MXNET_ADD_SPARSE_OP_ALIAS (gammaln)
647- .describe(R"code( Returns element-wise log of the absolute value of the gamma function \
648+ .describe(R"code( Returns element-wise log of the absolute value of the gamma function \
648649of the input.
649650
650651The storage type of ``gammaln`` output is always dense
651652
652653)code" )
653- .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_gammaln" });
654+ .set_attr<nnvm::FGradient>(" FGradient" , ElemwiseGradUseIn{" _backward_gammaln" });
654655
655656MXNET_OPERATOR_REGISTER_BINARY_WITH_SPARSE_CPU_DR (_backward_gammaln,
656657 unary_bwd<mshadow_op::gammaln_grad>);
0 commit comments