Jianlei Chang*, Ruofeng Mei*, Wei Ke, Xiangyu Xu†
Xi'an Jiaotong University
AAAI 2026 | Project Website | Paper
-
Hardware requirements
It is recommended to use NVIDIA GeForce RTX 4090 GPU.
-
Install environment:
conda env create -f conda_environment.yaml conda activate EfficientFlow -
Install mimicgen:
cd .. git clone https://github.com/NVlabs/mimicgen_environments.git cd mimicgen_environments pip install -e .
-
Update the source code:
Use
pip show robomimicto identify the package installation path. Then, edit the filerobomimic/envs/env_robosuite.pyatline 15and replace the import statement:- Original:
import mimicgen_envs - Updated:
import mimicgen
- Original:
Download dataset from MimicGen.
Make sure the dataset is kept under /path/to/EfficientFlow/data/robomimic/datasets/[dataset]/[dataset].hdf5
The downloaded dataset has a relative action space. To train with absolute action space, the dataset needs to be converted accordingly
# Template
python EfficientFlow/scripts/robomimic_dataset_conversion.py -i data/robomimic/datasets/[dataset]/[dataset].hdf5 -o data/robomimic/datasets/[dataset]/[dataset]_abs.hdf5 -n [n_worker]
# Replace [dataset] and [n_worker] with your choices.
# E.g., convert stack_d1 with 12 workers
python EfficientFlow/scripts/robomimic_dataset_conversion.py -i data/robomimic/datasets/stack_d1/stack_d1.hdf5 -o data/robomimic/datasets/stack_d1/stack_d1_abs.hdf5 -n 12To train EfficientFlow in Stack D1 task:
python train.py --config-name=EfficientFlow task_name=stack_d1 n_demo=100Note: Evaluation will be triggered automatically every certain number of epochs during training.
If you feel that this paper, models, or codes are helpful, please cite our paper, thanks for your support!
@inproceedings{chang2026EfficientFlow,
author={Chang, Jianlei and Mei, Ruofeng and Ke, Wei and Xu, Xiangyu},
title={EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)},
year={2026}
}This repository is released under the MIT license. See LICENSE for additional details.
- Our code is built upon the origional Equivarient Diffusion Policy, FlowPolicy, MeanFlow, MP1, Diffusion Policy, ACT, DP3.
