Skip to content

chang-jl/EfficientFlow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EfficientFlow Logo

EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI

Jianlei Chang*, Ruofeng Mei*, Wei Ke, Xiangyu Xu

Xi'an Jiaotong University

AAAI 2026  |  Project Website  |  Paper

Installation

  1. Hardware requirements

    It is recommended to use NVIDIA GeForce RTX 4090 GPU.

  2. Install environment:

    conda env create -f conda_environment.yaml
    conda activate EfficientFlow
    
  3. Install mimicgen:

    cd ..
    git clone https://github.com/NVlabs/mimicgen_environments.git
    cd mimicgen_environments
    pip install -e .
  4. Update the source code:

    Use pip show robomimic to identify the package installation path. Then, edit the file robomimic/envs/env_robosuite.py at line 15 and replace the import statement:

    • Original: import mimicgen_envs
    • Updated: import mimicgen

Dataset

Download Dataset

Download dataset from MimicGen.

Make sure the dataset is kept under /path/to/EfficientFlow/data/robomimic/datasets/[dataset]/[dataset].hdf5

Convert Action Space in Dataset

The downloaded dataset has a relative action space. To train with absolute action space, the dataset needs to be converted accordingly

# Template
python EfficientFlow/scripts/robomimic_dataset_conversion.py -i data/robomimic/datasets/[dataset]/[dataset].hdf5 -o data/robomimic/datasets/[dataset]/[dataset]_abs.hdf5 -n [n_worker]
# Replace [dataset] and [n_worker] with your choices.
# E.g., convert stack_d1 with 12 workers
python EfficientFlow/scripts/robomimic_dataset_conversion.py -i data/robomimic/datasets/stack_d1/stack_d1.hdf5 -o data/robomimic/datasets/stack_d1/stack_d1_abs.hdf5 -n 12

Training with image observation

To train EfficientFlow in Stack D1 task:

python train.py --config-name=EfficientFlow task_name=stack_d1 n_demo=100

Note: Evaluation will be triggered automatically every certain number of epochs during training.

Citation

If you feel that this paper, models, or codes are helpful, please cite our paper, thanks for your support!

@inproceedings{chang2026EfficientFlow,
  author={Chang, Jianlei and Mei, Ruofeng and Ke, Wei and Xu, Xiangyu},
  title={EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)},
  year={2026}
}

License

This repository is released under the MIT license. See LICENSE for additional details.

Acknowledgement

About

EfficientFlow: Efficient Equivariant Flow Policy Learning for Embodied AI

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages