Skip to content

chaewoonbae/ZEN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Official code implementation of ZEN

This repository is the official implementation of Parameter-Free Hypergraph Neural Network for Few-Shot Node Classification.

Dataset description

We provide ten hypergraph benchmark datasets for evaluating accuracy, and one additional dataset for interpretability analysis. Their overall statistics are as follows:

Benchmark datasets

Name Command name # of nodes # of edges # of classes # of features
Cora cora 2,708 1,579 7 1,433
Citeseer citeseer 3,312 1,079 6 3,703
Pubmed pubmed 19,717 7,963 3 500
Cora-CA coauthor_cora 2,708 1,072 7 1,433
20News 20newsW100 16,242 100 4 100
MN40 ModelNet40 12,311 12,311 40 100
Congress congress-bills 1,718 83,105 2 100
Walmart walmart-trips 88,860 69,906 11 100
Senate senate-committees 282 315 2 100
House house-committees 1,290 340 2 100

Interpretability dataset

Name Command name # of nodes # of edges # of classes # of features
Zoo zoo 101 43 7 16

Evaluation

To evaluate ZEN on Cora, run:

python main.py

Additional arguments

Argument Description
-data Name of the dataset to use. Options: cora, citeseer, pubmed, etc. Default: cora.
-n Grid resolution for 2-simplex search during hyperparameter tuning. Total grid points: $(n+2)(n+1)/2$. Default: 9.
-k Number of labeled nodes per class used for training and validation in few-shot classification. Default: 5.
-run Number of independent random splits (train/val/test) for evaluation. Default: 10.
-device Computation device. Options: cuda:0, cuda:1, cpu, etc. Default: cuda:0.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages