Skip to content

bcod-diffusion/dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

B-COD Dataset

This repository contains an anonymized subset of a marine navigation dataset, providing multimodal sensor data for the B-COD project.

Please download the dataset from this Google Drive link.

Original Dataset Structure

Each data snippet contains:

  • Belief raster (64×64×5 float16)
  • Map slice (64×64×3 semantic image)
  • Goal mask (64×64 binary)
  • Sensor flags (5-bit uint8 vector)
  • Ground truth trajectory (∆x,∆y,∆ψ for 8 waypoints)
  • Waypoint log-variances
  • Metadata (latitude/longitude, weather, clip ID)

Dataset Statistics

  • Modalities: 100% contain LiDAR and IMU data

    • Day camera: 72%
    • Night camera: 28%
    • GNSS: 64%
    • Sonde: 18%
  • Belief spread:

    • Median planar 1σ = 0.38m
    • 95th percentile = 2.1m
  • Lighting conditions: 0.2-55 kLux

  • Obstacle ranges:

    • Mean: 14.2m
    • Minimum: 0.8m

Current Publicly Available Dataset Directory Structure (Please note that this is a subset of the original dataset to maintain anonymity of the review process)

.
├── dataset_20250226_150909/
│   └── zEeZKgHmazs1R6C.h5
├── dataset_20250228_063657/
│   └── sA0JsWGpDDFMUMK.h5
...
└── dataset_lidar_json_untagged/
    └── *.json

Download

To download the dataset, please follow this this Google Drive link.

Usage

# PyTorch
from src.pytorch_loader import DatasetLoader
dataset = DatasetLoader("path/to/dataset")

# JAX
from src.jax_loader import DatasetLoader
loader = DatasetLoader("path/to/dataset", batch_size=32)
batch = loader.get_batch(0)

License

License will be released after the review process. We plan to release the whole dataset (280GB) under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages