Skip to content

[NeurIPS 2025] Mint: A Simple Test-Time Adaptation of Vision-Language Models against Common Corruptions. Wenxuan Bao, Ruxi Deng, Jingrui He

Notifications You must be signed in to change notification settings

baowenxuan/Mint

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Mint

[NeurIPS 2025] Mint: A Simple Test-Time Adaptation of Vision-Language Models against Common Corruptions. Wenxuan Bao*, Ruxi Deng*, Jingrui He

Key packages

torch          2.4.1
torchvision    0.19.1
clip           1.0

Datasets

  1. Downloads data from the corruption benchmark (CIFAR-10-C, CIFAR-100-C, and ImageNet-C) and extract them.
  2. Download classnames.txt from this link.
  3. The directory structure should look like
${data_root}/corruption
│ 
├── CIFAR-10-C
│   ├── brightness.npy
│   ├── ...
│   ├── pixelate.npy
│   └── labels.npy
│ 
├── CIFAR-100-C
│   ├── brightness.npy
│   ├── ...
│   ├── pixelate.npy
│   └── labels.npy
│ 
└── CIFAR-100-C
    ├── brightness
    │   ├── 1
    │   ├── ...
    │   └── 5
    │       ├── n01440764
    │       │   ├── ILSVRC2012_val_00000293.JPEG
    │       │   ├── ...
    │       │   └── ILSVRC2012_val_00048969.JPEG
    │       ├── ...
    │       └── n07579787
    ├── ...
    ├── pixelate
    └── classnames.txt

Experiments

To run experiments:

cd ./shell
./run_mint.sh

About

[NeurIPS 2025] Mint: A Simple Test-Time Adaptation of Vision-Language Models against Common Corruptions. Wenxuan Bao, Ruxi Deng, Jingrui He

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published