Skip to content

baiyimeng/IFRU

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IFRU

arXiv

This is the PyTorch implementation of our paper published in ACM Transactions on Recommender Systems (ACM TORS):

Recommendation Unlearning via Influence Function
Yang Zhang, Zhiyu Hu, Yimeng Bai, Jiancan Wu, Qifan Wang, Fuli Feng.

Usage

Data

Download the original datasets via the link provided in Data/download.txt, and preprocess them using the _data_process.py script.

Training & Evaluation

All run scripts used in the paper are named according to the method, backbone, dataset, and other configurations.
For example, eraser_mf_amazon.py corresponds to the RecEraser method with MF as the backbone, applied on the Amazon dataset:

python eraser_mf_amazon.py

Citation

@article{IFRU,
author = {Zhang, Yang and Hu, Zhiyu and Bai, Yimeng and Wu, Jiancan and Wang, Qifan and Feng, Fuli},
title = {Recommendation Unlearning via Influence Function},
year = {2024},
issue_date = {June 2025},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {3},
number = {2},
url = {https://doi.org/10.1145/3701763},
doi = {10.1145/3701763},
journal = {ACM Trans. Recomm. Syst.},
month = dec,
articleno = {22},
numpages = {23},
keywords = {Recommender system, recommendation unlearning, privacy, influence function}
}

About

The implementation for the work "Recommendation Unlearning via Influence Function".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages