Skip to content

[BUG] fit_summary plot does not save to the model path directory #4708

@everdark

Description

@everdark

Bug Report Checklist

  • I provided code that demonstrates a minimal reproducible example.
  • I confirmed bug exists on the latest mainline of AutoGluon via source install.
  • I confirmed bug exists on the latest stable version of AutoGluon.

Describe the bug

Plot generated by predictor.fit_summary does not save to predictor.path directory.

Expected behavior

Plot should be saved under the predictor.path directory.

To Reproduce

import pandas as pd
from autogluon.tabular import TabularPredictor

data_url = 'https://raw.githubusercontent.com/mli/ag-docs/main/knot_theory/'
train_data = pd.read_csv(f'{data_url}train.csv')
predictor = TabularPredictor(label="signature", path="/tmp/test")
predictor.fit(train_data, time_limit=5, included_model_types=["XGB"])
predictor.fit_summary()

Plot is saved to /tmp/testSummaryOfModels.html, but it should be /tmp/test/SummaryOfModels.html, at least according to the docstring of this method. Change the path value to /tmp/test/ (with a trailing slash) does not help since it always translate to non-slash-ending value in predictor.path.

Screenshots / Logs

Installed Versions

INSTALLED VERSIONS
------------------
date                   : 2024-12-04
time                   : 10:07:00.779902
python                 : 3.10.12.final.0
OS                     : Darwin
OS-release             : 23.6.0
Version                : Darwin Kernel Version 23.6.0: Thu Sep 12 23:35:29 PDT 2024; root:xnu-10063.141.1.701.1~1/RELEASE_ARM64_T6000
machine                : arm64
processor              : arm
num_cores              : 10
cpu_ram_mb             : 32768.0
cuda version           : None
num_gpus               : 0
gpu_ram_mb             : []
avail_disk_size_mb     : 22278

accelerate             : 0.34.2
autogluon              : 1.2
autogluon.common       : 1.2
autogluon.core         : 1.2
autogluon.features     : 1.2
autogluon.multimodal   : 1.2
autogluon.tabular      : 1.2
autogluon.timeseries   : 1.2
boto3                  : 1.35.73
catboost               : 1.2.7
coreforecast           : 0.0.12
defusedxml             : 0.7.1
einops                 : 0.8.0
evaluate               : 0.4.3
fastai                 : 2.7.18
fugue                  : 0.9.1
gluonts                : 0.16.0
huggingface-hub        : 0.26.3
hyperopt               : 0.2.7
imodels                : None
jinja2                 : 3.1.4
joblib                 : 1.4.2
jsonschema             : 4.21.1
lightgbm               : 4.5.0
lightning              : 2.4.0
matplotlib             : 3.9.3
mlforecast             : 0.13.4
networkx               : 3.4.2
nlpaug                 : 1.1.11
nltk                   : 3.8.1
numpy                  : 1.26.4
nvidia-ml-py3          : 7.352.0
omegaconf              : 2.2.3
onnx                   : None
onnxruntime            : None
onnxruntime-gpu        : None
openmim                : 0.3.9
optimum                : None
optimum-intel          : None
orjson                 : 3.10.12
pandas                 : 2.2.3
pdf2image              : 1.17.0
Pillow                 : 11.0.0
psutil                 : 6.1.0
pyarrow                : 18.1.0
pytesseract            : 0.3.10
pytorch-lightning      : 2.4.0
pytorch-metric-learning: 2.3.0
ray                    : 2.39.0
requests               : 2.32.3
scikit-image           : 0.24.0
scikit-learn           : 1.5.2
scikit-learn-intelex   : None
scipy                  : 1.14.1
seqeval                : 1.2.2
skl2onnx               : None
spacy                  : 3.7.5
statsforecast          : 1.7.8
tabpfn                 : None
tensorboard            : 2.18.0
text-unidecode         : 1.3
timm                   : 1.0.3
torch                  : 2.5.1
torchmetrics           : 1.2.1
torchvision            : 0.20.1
tqdm                   : 4.67.1
transformers           : 4.46.3
utilsforecast          : 0.2.4
vowpalwabbit           : None
xgboost                : 2.1.3

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions