Implementations from scratch done while studying some FHE papers; do not use in production.
-
arith: contains$\mathbb{Z}_q$ ,$R_q=\mathbb{Z}_q[X]/(X^N+1)$ ,$R=\mathbb{Z}[X]/(X^N+1)$ ,$\mathbb{T}_q[X]/(X^N +1)$ arithmetic implementations, together with the NTT implementation. -
gfhe: (gfhe=generalized-fhe) contains the structs and logic for RLWE, GLWE, GLev, GGSW, RGSW cryptosystems, and modulus switching and key switching methods, which can be used by concrete FHE schemes. -
bfv: https://eprint.iacr.org/2012/144.pdf scheme implementation -
ckks: https://eprint.iacr.org/2016/421.pdf scheme implementation -
tfhe: https://eprint.iacr.org/2018/421.pdf scheme implementation
cargo test --release
the repo is a work in progress, interfaces will change.
This example shows usage of TFHE, but the idea is that the same interface would
work for using CKKS & BFV, the only thing to be changed would be the parameters
and the usage of TLWE by CKKS or BFV.
let param = Param {
err_sigma: crate::ERR_SIGMA,
ring: RingParam { q: u64::MAX, n: 1 },
k: 256,
t: 128, // plaintext modulus
};
let mut rng = rand::thread_rng();
let msg_dist = Uniform::new(0_u64, param.t);
let (sk, pk) = TLWE::new_key(&mut rng, ¶m)?;
// get three random msgs in Rt
let m1 = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
let m2 = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
let m3 = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
// encode the msgs into the plaintext space
let p1 = TLWE::encode(¶m, &m1); // plaintext
let p2 = TLWE::encode(¶m, &m2); // plaintext
let c3_const = TLWE::new_const(¶m, &m3); // as constant/public value
// encrypt p1 and m2
let c1 = TLWE::encrypt(&mut rng, ¶m, &pk, &p1)?;
let c2 = TLWE::encrypt(&mut rng, ¶m, &pk, &p2)?;
// now we can do encrypted operations (notice that we do them using simple
// operation notation by rust's operator overloading):
let c_12 = c1 + c2;
let c4 = c_12 * c3_const;
// decrypt & decode
let p4_recovered = c4.decrypt(&sk);
let m4 = TLWE::decode(¶m, &p4_recovered);
// m4 is equal to (m1+m2)*m3
assert_eq!(((m1 + m2).to_r() * m3.to_r()).to_rq(param.t), m4);- TFHE
- {TLWE, TGLWE, TLev, TGLev, TGSW, TGGSW} encryption & decryption
- addition of ciphertexts, addition & multiplication of ciphertext by a plaintext
- external products of ciphertexts
- TGSW x TLWE
- TGGSW x TGLWE
- {TGSW, TGGSW} CMux gate
- blind rotation, key switching, mod switching
- bootstrapping
- CKKS
- encoding & decoding
- encryption & decryption
- addition & substraction of ciphertexts
- BFV
- encryption & decryption
- addition & substraction of ciphertexts
- addition & multiplication of ciphertext by a plaintext
- multiplication of ciphertexts with relinearization
- GFHE (generalized FHE)
- {GLWE & GLev} encryption & decryption
- key switching, mod switching
- addition & substraction of ciphertexts
- addition & multiplication of ciphertext by a plaintext
- arith
- base arithmetic for
$\mathbb{Z}_q,~~ R_q=\mathbb{Z}_q[X]/(X^N+1),~~ R=\mathbb{Z}[X]/(X^N+1),~~ \mathbb{T}_q[X]/(X^N +1)$ - NTT implementation (negacyclic convolution)
- base arithmetic for