@@ -286,8 +286,7 @@ print.summary.GeneralizedLinearRegressionModel <- function(x, ...) {
286286 " on" , format(unlist(x [c(" df.null" , " df.residual" )])), " degrees of freedom\n " ),
287287 1L , paste , collapse = " " ), sep = " " )
288288 cat(" AIC: " , format(x $ aic , digits = 4L ), " \n\n " ,
289- " Number of Fisher Scoring iterations: " , x $ iter , " \n " , sep = " " )
290- cat(" \n " )
289+ " Number of Fisher Scoring iterations: " , x $ iter , " \n\n " , sep = " " )
291290 invisible (x )
292291 }
293292
@@ -477,8 +476,8 @@ setMethod("spark.isoreg", signature(data = "SparkDataFrame", formula = "formula"
477476 }
478477
479478 jobj <- callJStatic(" org.apache.spark.ml.r.IsotonicRegressionWrapper" , " fit" ,
480- data @ sdf , formula , as.logical(isotonic ), as.integer(featureIndex ),
481- as.character(weightCol ))
479+ data @ sdf , formula , as.logical(isotonic ), as.integer(featureIndex ),
480+ as.character(weightCol ))
482481 new(" IsotonicRegressionModel" , jobj = jobj )
483482 })
484483
@@ -617,7 +616,7 @@ setMethod("summary", signature(object = "KMeansModel"),
617616 dataFrame(callJMethod(jobj , " cluster" ))
618617 }
619618 list (coefficients = coefficients , size = size ,
620- cluster = cluster , is.loaded = is.loaded )
619+ cluster = cluster , is.loaded = is.loaded )
621620 })
622621
623622# Predicted values based on a k-means model
@@ -787,17 +786,17 @@ read.ml <- function(path) {
787786 } else if (isInstanceOf(jobj , " org.apache.spark.ml.r.AFTSurvivalRegressionWrapper" )) {
788787 new(" AFTSurvivalRegressionModel" , jobj = jobj )
789788 } else if (isInstanceOf(jobj , " org.apache.spark.ml.r.GeneralizedLinearRegressionWrapper" )) {
790- new(" GeneralizedLinearRegressionModel" , jobj = jobj )
789+ new(" GeneralizedLinearRegressionModel" , jobj = jobj )
791790 } else if (isInstanceOf(jobj , " org.apache.spark.ml.r.KMeansWrapper" )) {
792- new(" KMeansModel" , jobj = jobj )
791+ new(" KMeansModel" , jobj = jobj )
793792 } else if (isInstanceOf(jobj , " org.apache.spark.ml.r.LDAWrapper" )) {
794- new(" LDAModel" , jobj = jobj )
793+ new(" LDAModel" , jobj = jobj )
795794 } else if (isInstanceOf(jobj , " org.apache.spark.ml.r.IsotonicRegressionWrapper" )) {
796- new(" IsotonicRegressionModel" , jobj = jobj )
795+ new(" IsotonicRegressionModel" , jobj = jobj )
797796 } else if (isInstanceOf(jobj , " org.apache.spark.ml.r.GaussianMixtureWrapper" )) {
798- new(" GaussianMixtureModel" , jobj = jobj )
797+ new(" GaussianMixtureModel" , jobj = jobj )
799798 } else if (isInstanceOf(jobj , " org.apache.spark.ml.r.ALSWrapper" )) {
800- new(" ALSModel" , jobj = jobj )
799+ new(" ALSModel" , jobj = jobj )
801800 } else {
802801 stop(paste(" Unsupported model: " , jobj ))
803802 }
@@ -1035,7 +1034,7 @@ setMethod("summary", signature(object = "GaussianMixtureModel"),
10351034 dataFrame(callJMethod(jobj , " posterior" ))
10361035 }
10371036 list (lambda = lambda , mu = mu , sigma = sigma ,
1038- posterior = posterior , is.loaded = is.loaded )
1037+ posterior = posterior , is.loaded = is.loaded )
10391038 })
10401039
10411040# Predicted values based on a gaussian mixture model
@@ -1154,7 +1153,7 @@ setMethod("summary", signature(object = "ALSModel"),
11541153 itemFactors <- dataFrame(callJMethod(jobj , " itemFactors" ))
11551154 rank <- callJMethod(jobj , " rank" )
11561155 list (user = user , item = item , rating = rating , userFactors = userFactors ,
1157- itemFactors = itemFactors , rank = rank )
1156+ itemFactors = itemFactors , rank = rank )
11581157 })
11591158
11601159
0 commit comments