|
24 | 24 | _serialize_double_matrix, _deserialize_double_matrix, \ |
25 | 25 | _serialize_double_vector, _deserialize_double_vector, \ |
26 | 26 | _get_initial_weights, _serialize_rating, _regression_train_wrapper, \ |
27 | | - LinearModel, _linear_predictor_typecheck |
| 27 | + LinearModel, _linear_predictor_typecheck, _get_unmangled_labeled_point_rdd |
28 | 28 | from pyspark.mllib.linalg import SparseVector |
29 | 29 | from pyspark.mllib.regression import LabeledPoint |
30 | 30 | from math import exp, log |
@@ -135,9 +135,9 @@ class NaiveBayesModel(object): |
135 | 135 | >>> model.predict(array([1.0, 0.0])) |
136 | 136 | 1.0 |
137 | 137 | >>> sparse_data = [ |
138 | | - ... LabeledPoint(0.0, SparseVector(2, {1: 0.0}), |
139 | | - ... LabeledPoint(0.0, SparseVector(2, {1: 1.0}), |
140 | | - ... LabeledPoint(1.0, SparseVector(2, {0: 1.0}) |
| 138 | + ... LabeledPoint(0.0, SparseVector(2, {1: 0.0})), |
| 139 | + ... LabeledPoint(0.0, SparseVector(2, {1: 1.0})), |
| 140 | + ... LabeledPoint(1.0, SparseVector(2, {0: 1.0})) |
141 | 141 | ... ] |
142 | 142 | >>> model = NaiveBayes.train(sc.parallelize(sparse_data)) |
143 | 143 | >>> model.predict(SparseVector(2, {1: 1.0})) |
@@ -173,7 +173,7 @@ def train(cls, data, lambda_=1.0): |
173 | 173 | @param lambda_: The smoothing parameter |
174 | 174 | """ |
175 | 175 | sc = data.context |
176 | | - dataBytes = _get_unmangled_double_vector_rdd(data) |
| 176 | + dataBytes = _get_unmangled_labeled_point_rdd(data) |
177 | 177 | ans = sc._jvm.PythonMLLibAPI().trainNaiveBayes(dataBytes._jrdd, lambda_) |
178 | 178 | return NaiveBayesModel( |
179 | 179 | _deserialize_double_vector(ans[0]), |
|
0 commit comments