@@ -120,7 +120,6 @@ setMethod("schema",
120120# '
121121# ' Print the logical and physical Catalyst plans to the console for debugging.
122122# '
123- # ' @param x A SparkDataFrame
124123# ' @param extended Logical. If extended is FALSE, explain() only prints the physical plan.
125124# ' @family SparkDataFrame functions
126125# ' @aliases explain,SparkDataFrame-method
@@ -177,11 +176,10 @@ setMethod("isLocal",
177176# '
178177# ' Print the first numRows rows of a SparkDataFrame
179178# '
180- # ' @param x A SparkDataFrame
181- # ' @param numRows The number of rows to print. Defaults to 20.
182- # ' @param truncate Whether truncate long strings. If true, strings more than 20 characters will be
183- # ' truncated and all cells will be aligned right
184- # '
179+ # ' @param numRows the number of rows to print. Defaults to 20.
180+ # ' @param truncate whether truncate long strings. If true, strings more than 20 characters will be
181+ # ' truncated. However, if set greater than zero, truncates strings longer than `truncate`
182+ # ' characters and all cells will be aligned right.
185183# ' @family SparkDataFrame functions
186184# ' @aliases showDF,SparkDataFrame-method
187185# ' @rdname showDF
@@ -206,7 +204,7 @@ setMethod("showDF",
206204# '
207205# ' Print the SparkDataFrame column names and types
208206# '
209- # ' @param x A SparkDataFrame
207+ # ' @param object a SparkDataFrame.
210208# '
211209# ' @family SparkDataFrame functions
212210# ' @rdname show
@@ -318,6 +316,7 @@ setMethod("colnames",
318316 columns(x )
319317 })
320318
319+ # ' @param value a character vector. Must have the same length as the number of columns in the SparkDataFrame.
321320# ' @rdname columns
322321# ' @aliases colnames<-,SparkDataFrame-method
323322# ' @name colnames<-
@@ -406,7 +405,6 @@ setMethod("coltypes",
406405# '
407406# ' Set the column types of a SparkDataFrame.
408407# '
409- # ' @param x A SparkDataFrame
410408# ' @param value A character vector with the target column types for the given
411409# ' SparkDataFrame. Column types can be one of integer, numeric/double, character, logical, or NA
412410# ' to keep that column as-is.
@@ -510,9 +508,9 @@ setMethod("registerTempTable",
510508# '
511509# ' Insert the contents of a SparkDataFrame into a table registered in the current SparkSession.
512510# '
513- # ' @param x A SparkDataFrame
514- # ' @param tableName A character vector containing the name of the table
515- # ' @param overwrite A logical argument indicating whether or not to overwrite
511+ # ' @param x a SparkDataFrame.
512+ # ' @param tableName a character vector containing the name of the table.
513+ # ' @param overwrite a logical argument indicating whether or not to overwrite.
516514# ' the existing rows in the table.
517515# '
518516# ' @family SparkDataFrame functions
@@ -571,7 +569,9 @@ setMethod("cache",
571569# ' supported storage levels, refer to
572570# ' \url{http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence}.
573571# '
574- # ' @param x The SparkDataFrame to persist
572+ # ' @param x the SparkDataFrame to persist.
573+ # ' @param newLevel storage level chosen for the persistance. See available options in
574+ # ' the description.
575575# '
576576# ' @family SparkDataFrame functions
577577# ' @rdname persist
@@ -634,9 +634,10 @@ setMethod("unpersist",
634634# ' \item{3.} {Return a new SparkDataFrame partitioned by the given column(s),
635635# ' using `spark.sql.shuffle.partitions` as number of partitions.}
636636# '}
637- # ' @param x A SparkDataFrame
638- # ' @param numPartitions The number of partitions to use.
639- # ' @param col The column by which the partitioning will be performed.
637+ # ' @param x a SparkDataFrame.
638+ # ' @param numPartitions the number of partitions to use.
639+ # ' @param col the column by which the partitioning will be performed.
640+ # ' @param ... additional column(s) to be used in the partitioning.
640641# '
641642# ' @family SparkDataFrame functions
642643# ' @rdname repartition
@@ -915,8 +916,6 @@ setMethod("sample_frac",
915916
916917# ' Returns the number of rows in a SparkDataFrame
917918# '
918- # ' @param x A SparkDataFrame
919- # '
920919# ' @family SparkDataFrame functions
921920# ' @rdname nrow
922921# ' @name count
@@ -1092,8 +1091,10 @@ setMethod("limit",
10921091 dataFrame(res )
10931092 })
10941093
1095- # ' Take the first NUM rows of a SparkDataFrame and return a the results as a R data.frame
1094+ # ' Take the first NUM rows of a SparkDataFrame and return the results as a R data.frame
10961095# '
1096+ # ' @param x a SparkDataFrame.
1097+ # ' @param num number of rows to take.
10971098# ' @family SparkDataFrame functions
10981099# ' @rdname take
10991100# ' @name take
@@ -1120,9 +1121,9 @@ setMethod("take",
11201121# ' then head() returns the first 6 rows in keeping with the current data.frame
11211122# ' convention in R.
11221123# '
1123- # ' @param x A SparkDataFrame
1124- # ' @param num The number of rows to return. Default is 6.
1125- # ' @return A data.frame
1124+ # ' @param x a SparkDataFrame.
1125+ # ' @param num the number of rows to return. Default is 6.
1126+ # ' @return A data.frame.
11261127# '
11271128# ' @family SparkDataFrame functions
11281129# ' @aliases head,SparkDataFrame-method
@@ -1146,7 +1147,7 @@ setMethod("head",
11461147
11471148# ' Return the first row of a SparkDataFrame
11481149# '
1149- # ' @param x A SparkDataFrame
1150+ # ' @param x a SparkDataFrame or a column used in aggregation function.
11501151# '
11511152# ' @family SparkDataFrame functions
11521153# ' @aliases first,SparkDataFrame-method
@@ -1240,7 +1241,6 @@ setMethod("group_by",
12401241# '
12411242# ' Compute aggregates by specifying a list of columns
12421243# '
1243- # ' @param x a SparkDataFrame
12441244# ' @family SparkDataFrame functions
12451245# ' @aliases agg,SparkDataFrame-method
12461246# ' @rdname summarize
@@ -1387,16 +1387,15 @@ setMethod("dapplyCollect",
13871387# ' Groups the SparkDataFrame using the specified columns and applies the R function to each
13881388# ' group.
13891389# '
1390- # ' @param x A SparkDataFrame
1391- # ' @param cols Grouping columns
1392- # ' @param func A function to be applied to each group partition specified by grouping
1390+ # ' @param cols grouping columns.
1391+ # ' @param func a function to be applied to each group partition specified by grouping
13931392# ' column of the SparkDataFrame. The function `func` takes as argument
13941393# ' a key - grouping columns and a data frame - a local R data.frame.
13951394# ' The output of `func` is a local R data.frame.
1396- # ' @param schema The schema of the resulting SparkDataFrame after the function is applied.
1395+ # ' @param schema the schema of the resulting SparkDataFrame after the function is applied.
13971396# ' The schema must match to output of `func`. It has to be defined for each
13981397# ' output column with preferred output column name and corresponding data type.
1399- # ' @return a SparkDataFrame
1398+ # ' @return A SparkDataFrame.
14001399# ' @family SparkDataFrame functions
14011400# ' @aliases gapply,SparkDataFrame-method
14021401# ' @rdname gapply
@@ -1479,13 +1478,12 @@ setMethod("gapply",
14791478# ' Groups the SparkDataFrame using the specified columns, applies the R function to each
14801479# ' group and collects the result back to R as data.frame.
14811480# '
1482- # ' @param x A SparkDataFrame
1483- # ' @param cols Grouping columns
1484- # ' @param func A function to be applied to each group partition specified by grouping
1481+ # ' @param cols grouping columns.
1482+ # ' @param func a function to be applied to each group partition specified by grouping
14851483# ' column of the SparkDataFrame. The function `func` takes as argument
14861484# ' a key - grouping columns and a data frame - a local R data.frame.
14871485# ' The output of `func` is a local R data.frame.
1488- # ' @return a data.frame
1486+ # ' @return A data.frame.
14891487# ' @family SparkDataFrame functions
14901488# ' @aliases gapplyCollect,SparkDataFrame-method
14911489# ' @rdname gapplyCollect
@@ -2461,8 +2459,8 @@ setMethod("unionAll",
24612459# ' Union two or more SparkDataFrames. This is equivalent to `UNION ALL` in SQL.
24622460# ' Note that this does not remove duplicate rows across the two SparkDataFrames.
24632461# '
2464- # ' @param x A SparkDataFrame
2465- # ' @param ... Additional SparkDataFrame
2462+ # ' @param x a SparkDataFrame.
2463+ # ' @param ... additional SparkDataFrame(s).
24662464# ' @return A SparkDataFrame containing the result of the union.
24672465# ' @family SparkDataFrame functions
24682466# ' @aliases rbind,SparkDataFrame-method
@@ -2519,8 +2517,8 @@ setMethod("intersect",
25192517# ' Return a new SparkDataFrame containing rows in this SparkDataFrame
25202518# ' but not in another SparkDataFrame. This is equivalent to `EXCEPT` in SQL.
25212519# '
2522- # ' @param x A SparkDataFrame
2523- # ' @param y A SparkDataFrame
2520+ # ' @param x a SparkDataFrame.
2521+ # ' @param y a SparkDataFrame.
25242522# ' @return A SparkDataFrame containing the result of the except operation.
25252523# ' @family SparkDataFrame functions
25262524# ' @aliases except,SparkDataFrame,SparkDataFrame-method
@@ -2561,10 +2559,11 @@ setMethod("except",
25612559# ' and to not change the existing data.
25622560# ' }
25632561# '
2564- # ' @param df A SparkDataFrame
2565- # ' @param path A name for the table
2566- # ' @param source A name for external data source
2567- # ' @param mode One of 'append', 'overwrite', 'error', 'ignore' save mode (it is 'error' by default)
2562+ # ' @param df a SparkDataFrame.
2563+ # ' @param path a name for the table.
2564+ # ' @param source a name for external data source.
2565+ # ' @param mode one of 'append', 'overwrite', 'error', 'ignore' save mode (it is 'error' by default)
2566+ # ' @param ... additional argument(s) passed to the method.
25682567# '
25692568# ' @family SparkDataFrame functions
25702569# ' @aliases write.df,SparkDataFrame,character-method
@@ -2623,10 +2622,11 @@ setMethod("saveDF",
26232622# ' ignore: The save operation is expected to not save the contents of the SparkDataFrame
26242623# ' and to not change the existing data. \cr
26252624# '
2626- # ' @param df A SparkDataFrame
2627- # ' @param tableName A name for the table
2628- # ' @param source A name for external data source
2629- # ' @param mode One of 'append', 'overwrite', 'error', 'ignore' save mode (it is 'error' by default)
2625+ # ' @param df a SparkDataFrame.
2626+ # ' @param tableName a name for the table.
2627+ # ' @param source a name for external data source.
2628+ # ' @param mode one of 'append', 'overwrite', 'error', 'ignore' save mode (it is 'error' by default).
2629+ # ' @param ... additional option(s) passed to the method.
26302630# '
26312631# ' @family SparkDataFrame functions
26322632# ' @aliases saveAsTable,SparkDataFrame,character-method
@@ -2662,10 +2662,10 @@ setMethod("saveAsTable",
26622662# ' Computes statistics for numeric columns.
26632663# ' If no columns are given, this function computes statistics for all numerical columns.
26642664# '
2665- # ' @param x A SparkDataFrame to be computed.
2666- # ' @param col A string of name
2667- # ' @param ... Additional expressions
2668- # ' @return A SparkDataFrame
2665+ # ' @param x a SparkDataFrame to be computed.
2666+ # ' @param col a string of name.
2667+ # ' @param ... additional expressions.
2668+ # ' @return A SparkDataFrame.
26692669# ' @family SparkDataFrame functions
26702670# ' @aliases describe,SparkDataFrame,character-method describe,SparkDataFrame,ANY-method
26712671# ' @rdname summary
@@ -2700,6 +2700,7 @@ setMethod("describe",
27002700 dataFrame(sdf )
27012701 })
27022702
2703+ # ' @param object a SparkDataFrame to be summarized.
27032704# ' @rdname summary
27042705# ' @name summary
27052706# ' @aliases summary,SparkDataFrame-method
@@ -2715,16 +2716,20 @@ setMethod("summary",
27152716# '
27162717# ' dropna, na.omit - Returns a new SparkDataFrame omitting rows with null values.
27172718# '
2718- # ' @param x A SparkDataFrame.
2719+ # ' @param x a SparkDataFrame.
27192720# ' @param how "any" or "all".
27202721# ' if "any", drop a row if it contains any nulls.
27212722# ' if "all", drop a row only if all its values are null.
27222723# ' if minNonNulls is specified, how is ignored.
2723- # ' @param minNonNulls If specified, drop rows that have less than
2724+ # ' @param minNonNulls if specified, drop rows that have less than
27242725# ' minNonNulls non-null values.
27252726# ' This overwrites the how parameter.
2726- # ' @param cols Optional list of column names to consider.
2727- # ' @return A SparkDataFrame
2727+ # ' @param cols optional list of column names to consider. In `fillna`,
2728+ # ' columns specified in cols that do not have matching data
2729+ # ' type are ignored. For example, if value is a character, and
2730+ # ' subset contains a non-character column, then the non-character
2731+ # ' column is simply ignored.
2732+ # ' @return A SparkDataFrame.
27282733# '
27292734# ' @family SparkDataFrame functions
27302735# ' @rdname nafunctions
@@ -2769,18 +2774,12 @@ setMethod("na.omit",
27692774
27702775# ' fillna - Replace null values.
27712776# '
2772- # ' @param x A SparkDataFrame.
2773- # ' @param value Value to replace null values with.
2777+ # ' @param value value to replace null values with.
27742778# ' Should be an integer, numeric, character or named list.
27752779# ' If the value is a named list, then cols is ignored and
27762780# ' value must be a mapping from column name (character) to
27772781# ' replacement value. The replacement value must be an
27782782# ' integer, numeric or character.
2779- # ' @param cols optional list of column names to consider.
2780- # ' Columns specified in cols that do not have matching data
2781- # ' type are ignored. For example, if value is a character, and
2782- # ' subset contains a non-character column, then the non-character
2783- # ' column is simply ignored.
27842783# '
27852784# ' @rdname nafunctions
27862785# ' @name fillna
@@ -2845,8 +2844,11 @@ setMethod("fillna",
28452844# ' Since data.frames are held in memory, ensure that you have enough memory
28462845# ' in your system to accommodate the contents.
28472846# '
2848- # ' @param x a SparkDataFrame
2849- # ' @return a data.frame
2847+ # ' @param x a SparkDataFrame.
2848+ # ' @param row.names NULL or a character vector giving the row names for the data frame.
2849+ # ' @param optional If `TRUE`, converting column names is optional.
2850+ # ' @param ... additional arguments passed to the method.
2851+ # ' @return A data.frame.
28502852# ' @family SparkDataFrame functions
28512853# ' @aliases as.data.frame,SparkDataFrame-method
28522854# ' @rdname as.data.frame
@@ -3000,9 +3002,8 @@ setMethod("str",
30003002# ' Returns a new SparkDataFrame with columns dropped.
30013003# ' This is a no-op if schema doesn't contain column name(s).
30023004# '
3003- # ' @param x A SparkDataFrame.
3004- # ' @param cols A character vector of column names or a Column.
3005- # ' @return A SparkDataFrame
3005+ # ' @param col a character vector of column names or a Column.
3006+ # ' @return A SparkDataFrame.
30063007# '
30073008# ' @family SparkDataFrame functions
30083009# ' @rdname drop
@@ -3049,8 +3050,8 @@ setMethod("drop",
30493050# '
30503051# ' @name histogram
30513052# ' @param nbins the number of bins (optional). Default value is 10.
3053+ # ' @param col the column (described by character or Column object) to build the histogram from.
30523054# ' @param df the SparkDataFrame containing the Column to build the histogram from.
3053- # ' @param colname the name of the column to build the histogram from.
30543055# ' @return a data.frame with the histogram statistics, i.e., counts and centroids.
30553056# ' @rdname histogram
30563057# ' @aliases histogram,SparkDataFrame,characterOrColumn-method
@@ -3184,6 +3185,7 @@ setMethod("histogram",
31843185# ' @param x A SparkDataFrame
31853186# ' @param url JDBC database url of the form `jdbc:subprotocol:subname`
31863187# ' @param tableName The name of the table in the external database
3188+ # ' @param ... additional argument(s) passed to the method
31873189# ' @param mode One of 'append', 'overwrite', 'error', 'ignore' save mode (it is 'error' by default)
31883190# ' @family SparkDataFrame functions
31893191# ' @rdname write.jdbc
0 commit comments