Repository for "Performative Prediction on Games and Mechanism Design".
AISTATS 2025. Góis, A., Mofakhami, M., Santos, F. P., Gidel, G., & Lacoste-Julien, S.
Simulation for RRM with scale-free networks (Figure 4):
python plot_rrm_scalefree.py --save_path rrm
Heatmaps for the anarchic setting with \tau=0 (Figure 5):
python plot_alpha_heatmap.py --graph fullpython plot_alpha_heatmap.py --graph scale-free
Trust oscillation (Figure 6):
python plot_trust_oscillation.py --discount_rate med
Tradeoffs between accuracy and welfare (Figure 7):
python plot_tradeoff_thresholds.py
Plot to compare architectures (Figure 8):
python train_all_archs.py --seed 0 --stats_path crd_archs_stats --loss group- repeat for seeds 1, 2, 3
python plot_architectures_avgs.py --read_path crd_archs_stats --loss group
Histograms for RRM with scale-free networks in appendix (Figure 12):
python plot_rrm_scalefree.py --plot_single_pop -n 20- repeat for n=30, 50
Ablation of gradient components in appendix (Figure 15):
python train.py --architecture gnn+mlp --seed 0 --epochs 200 --topology scale-free --loss individual -lr 1e-4 --save_stats --use_custom_grad --block_prev_trust --stats_path crd_stats_grad-blockprevtrust/- repeat for seeds 1, 2, 3, 4
python train.py --architecture gnn+mlp --seed 0 --epochs 200 --topology scale-free --loss individual -lr 1e-4 --save_stats --use_custom_grad --block_trust_grad --stats_path crd_stats_grad-blocktrust/- repeat for seeds 1, 2, 3, 4
python train.py --architecture gnn+mlp --seed 0 --epochs 200 --topology scale-free --loss individual -lr 1e-4 --save_stats --use_custom_grad --stats_path crd_stats_grad-full/- repeat for seeds 1, 2, 3, 4
python plot_ablation.py