conda create -n multi-irl python=3.11 pip
conda activate multi-irl
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirements.txt
cd envs
pip install -e .
Build and run the provided Dockerfile
First, download the expert data provided by Liu et al. here (make sure to update expert_data_path in config files if necessary).
conda activate multi-irl
export PYTHONPATH=${pwd}:$PYTHONPATH
python scripts/train_icrl.py env={NAME_OF_ENV}", f"expert_data_path={LOCATION_OF_EXPERT_DATA}", f"+experiment={NAME_OF_EXPERIMENT}
NAME_OF_ENV and NAME_OF_EXPERIMENT must correspond to one of the names of the YAML files provided in config/env and config/experiment, respectively.
To run the experiments in the paper, use the following experiment names:
-
IRL-Base:
orig_irl_rn.yaml -
IRL+L2:
l2.yaml -
IRL+L2+SC:
sc_l2_warmstart.yaml -
IRL+L2+PR:
l2_pr_warmstart.yaml -
IRL+L2+SC+PR (IRL-Plus):
sc_l2_pr_warmstart.yaml
Experiments with seperate critics should be run with scripts/train_icrl.py. Otherwise, should be run with scripts/train_simple_icl.py