This repository contains the official pytorch implementation for "Forecasting Time-to-Collision from Monocular Video: Feasibility, Dataset and Challenges". Please also check out our project page here. If you find this code useful, please cite our paper:
@article{Manglik2019,
archivePrefix = {arXiv},
arxivId = {1903.09102},
author = {Manglik, Aashi and Weng, Xinshuo and Ohn-bar, Eshed and Kitani, Kris},
eprint = {1903.09102},
journal = {arXiv:1903.09102},
title = {{Forecasting Time-to-Collision from Monocular Video: Feasibility, Dataset and Challenges}},
url = {https://arxiv.org/pdf/1903.09102.pdf},
year = {2019}
}
Here is link to our dataset. The data is stored .mat format.
| S.No. | Folder | Recordings |
|---|---|---|
| 1 | mats_nov | Left images, Right images, 3D point cloud, Calibration |
| 2 | mats_dec | Left images, Right images, 3D point cloud, Calibration |
| 3 | mat_stereo_camera | Left images, Right images, Depth Maps from Stereo Camera |
- Python 3.6
- PyTorch tested on
0.4.0
-
Download the trained model:
vgg_on_voc800
6Image6s_027 -
Download preprocessed test data in
.h5format:
6ImageTest.h5
We used Faster RCNN to get the bounding boxes of people. Please see preprocessing/getBoundingBoxes.
Please see test/multi_stream_prediction.py
