Skip to content

ZhaoYujie2002/LangSplatV2

Repository files navigation

LangSplatV2: High-dimensional 3D Language Gaussian Splatting with 450+ FPS

(* indicates equal contribution)

Teaser

Framework

This repository contains the official authors implementation associated with the paper "High-dimensional 3D Language Gaussian Splatting with 450+ FPS". We further provide the datasets and model weights.

Clone the Repository

The repository contains submodules, thus please check it out with

# SSH
git clone [email protected]:ZhaoYujie2002/LangSplatV2.git --recursive

or

# HTTPS
git clone https://github.com/ZhaoYujie2002/LangSplatV2.git --recursive

Setup

Requirements

  • Conda (recommended for easy setup)
  • C++ Compiler for PyTorch extensions (we used VS Code)
  • CUDA SDK 11 for PyTorch extensions (we used 11.8)
  • C++ Compiler and CUDA SDK must be compatible
  • A NVIDIA A100 GPU (we used in our experiments)

Environment Setup

Our default, provided install method is based on Conda package and environment management:

conda env create --file environment.yml
conda activate langsplat_v2

Prepare Dataset

In the experiments section of our paper, we primarily utilized Three datasets: the LERF dataset and the 3D-OVS dataset and the Mip-NeRF360 dataset.

The LERF dataset is accessible for download from repository LangSplat via the following link: Download LERF Dataset.

The 3D-OVS dataset is accessible for download from repository 3D-OVS via the following link: Download 3D-OVS Dataset.

The Mip-NeRF360 dataset is accessible for download from repostory GAGS via the following link: Download Mip-NeRF360 Dataset.

For your own scenes, you need to acquire the following dataset format and a pre-trained RGB model follow the 3D Gaussian Splatting repository.

<dataset_name>
|---images
|   |---<image 0>
|   |---<image 1>
|   |---...
|---output
|   |---<dataset_name>
|   |   |---point_cloud/iteration_30000/point_cloud.ply
|   |   |---cameras.json
|   |   |---cfg_args
|   |   |---chkpnt30000.pth
|   |   |---input.ply
|---sparse
    |---0
        |---cameras.bin
        |---images.bin
        |---points3D.bin

QuickStart

Download the pretrained model to output/, then simply use

# For the LERF dataset
# eg. bash eval_lerf.sh teatime 0 10000
bash eval_lerf.sh $scene_name $model_idx $checkpoint

Pipeline

The pipeline for training LangSplat V2 and evaluation.

  • Step 1: Generate Language Feature of the Scenes.

    python preprocess.py --dataset_path $dataset_path 
  • Step 2: Train the Global Semantic Codebook and the Sparse Coefficient Field.

    bash train.sh $dataset_root_path $scene_name $model_idx
  • Step 3: Eval.

    For the LERF dataset

    bash eval_lerf.sh $scene_name $model_idx $checkpoint

    For the 3D-OVS dataset

    bash eval_3d_ovs.sh $scene_name $model_idx $checkpoint

    For the Mip-NeRF360 dataset

    bash eval_mip_nerf360.sh $scene_name $model_idx $checkpoint

TODO list:

  • update the arxiv link
  • release more model weights
  • release more code of evaluation

BibTeX

@article{li2025langsplatv2,
      title={LangSplatV2: High-dimensional 3D Language Gaussian Splatting with 450+ FPS}, 
      author={Wanhua Li and Yujie Zhao and Minghan Qin and Yang Liu and Yuanhao Cai and Chuang Gan and Hanspeter Pfister},
      year={2025},
      journal={Advances in Neural Information Processing Systems},
      eprint={2507.07136},
      archivePrefix={arXiv},
      primaryClass={cs.GR},
      url={https://arxiv.org/abs/2507.07136}, 
}

Research Series

[CVPR 2024] Langsplat: 3d language gaussian splatting
@inproceedings{qin2024langsplat,
  title={Langsplat: 3d language gaussian splatting},
  author={Qin, Minghan and Li, Wanhua and Zhou, Jiawei and Wang, Haoqian and Pfister, Hanspeter},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={20051--20060},
  year={2024}
}
[CVPR 2025] 4d langsplat: 4d language gaussian splatting via multimodal large language models
@inproceedings{li20254d,
  title={4d langsplat: 4d language gaussian splatting via multimodal large language models},
  author={Li, Wanhua and Zhou, Renping and Zhou, Jiawei and Song, Yingwei and Herter, Johannes and Qin, Minghan and Huang, Gao and Pfister, Hanspeter},
  booktitle={Proceedings of the Computer Vision and Pattern Recognition Conference},
  pages={22001--22011},
  year={2025}
}

About

[NeurIPS 2025] LangSplatV2: High-dimensional 3D Language Gaussian Splatting with 450+ FPS

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published