Python implementation for "Temporal-Mapping Photography for Event Cameras" -ECCV2024
The EvTemMap method deployed in this branch converts raw files collected by AT-DVS into TemMat, and performs the most basic time-domain to grayscale-domain conversion, generating grayscale images containing noise degradation.
- Raw to TemMat Conversion: Transforms raw event data from AT-DVS into temporal matrices (TemMat).
- Time to Grayscale Conversion: Converts the temporal data into grayscale images, albeit with noise degradation.
- Adjustable Bias Parameter: The
EvTemMap.pyscript includes abiasparameter which can be used to adjust the overall brightness of the grayscale images during visualization. Increasing the bias will result in brighter images.
To run the EvTemMap method, ensure you have the following dependencies installed:
numpyopencv-pythonmetavision sdk(Please follow the installation guide at Prophesee Metavision Installation)
-
Clone the repository:
git clone https://github.com/yourusername/EvTemMap.git cd EvTemMap -
Checkout to the
EvTemMap_basicbranch:git checkout EvTemMap_basic
-
Install the required dependencies:
pip install numpy opencv-python
-
Follow the instructions in the Prophesee Metavision Installation Guide to install the Metavision SDK.
To run the EvTemMap basic method:
- Open the
EvTemMap.pyfile. - Adjust the
biasparameter as needed to achieve the desired brightness for your grayscale images. - Execute the script (for normal brightness dataset):
python EvTemMap.py --input path_to_raw_file
- or Execute the script (for extremely low brightness dataset):
python EvTemMap.py --input path_to_raw_file --bias 300e3