Skip to content

Xiaoqi-Zhao-DLUT/MMFT

Repository files navigation

MMFT


Logo

Joint Learning of Salient Object Detection, Depth Estimation and Contour Extraction

IEEE TIP, 2022
Xiaoqi Zhao · Youwei Pang · Lihe Zhang · Huchuan Lu

arXiv PDF


Motivation - Our High-quality Depth Prediction vs. Previous Low-quality Depth Inputs


Motivation - Depth-free Networks


Pipeline - Multi-task Learning Framework (Depth, Saliency, Contour)


Potential - Predicted Depth Maps on RGB SOD datasets


Potential - Helping Existing Depth-based Methods to Obtain Additional Gains


Datasets

Trained Models

Prediction Maps

Evaluation Tools

Citation

If you think MMFT codebase are useful for your research, please consider referring us:

@article{MMFT,
  title={Joint learning of salient object detection, depth estimation and contour extraction},
  author={Zhao, Xiaoqi and Pang, Youwei and Zhang, Lihe and Lu, Huchuan},
  journal={IEEE Transactions on Image Processing},
  volume={31},
  pages={7350--7362},
  year={2022}
}

About

(TIP 2022) Joint Learning of Salient Object Detection, Depth Estimation and Contour Extraction

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages