Weiyun Jiang, Yuhao Liu, Vivek Boominathan, Ashok Veeraraghavan
conda env create -f implicit_turbu.yml
conda activate implicit_turbu
- Put the desired dataset under
data/Ablation_data/ - Download the precomputed p2s model parameters from Google Drive
- Unzip
p2s_data.zipunderdata/p2s_data
The code is organized as follows:
networks/contains some basic neural network building blocks.utils/contains utility functions, most promintently related to reading images.NeRT.ipynbcontains demo codes.
Run the NeRT.ipynb using jupyter notebook
@article{jiang2023nert_general,
title={Nert: Implicit neural representations for general unsupervised
turbulence mitigation},
author={Jiang, Weiyun and Liu, Yuhao and Boominathan, Vivek and
Veeraraghavan, Ashok},
journal={arXiv preprint arXiv:2308.00622},
year={2023}
}
@inproceedings{jiang2023nert,
title={Nert: Implicit neural representations for unsupervised atmospheric
turbulence mitigation},
author={Jiang, Weiyun and Boominathan, Vivek and Veeraraghavan, Ashok},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops},
pages={4235--4242},
year={2023}
}