Software package for atomized force fields emulator (Python)
Description: This package is the application of AFF method. It allows the efficient molecular potential energy surface and force fields emulation.
Reference: Efficient force field and energy emulation through partition of permutationally equivalent atoms. The Journal of Chemical Physics. (https://aip.scitation.org/doi/10.1063/5.0088017)
Requirement: Python 3.7+, NumPy (>=1.19) ,SciPy (>=1.1)
Example: Query a force field
import numpy as np
from utils import aff
# load the dataset contains the geometry information and the force-fields
dataset=np.load('./dataset/uracil_dft.npz')
AFF_train=aff.AFFTrain()
n_train=100
# create the task file contains the training, validation and testing dataset
task=AFF_train.create_task(train_dataset=dataset,
n_train = n_train ,
valid_dataset=dataset,
n_valid=50,
n_test=50,
lam = 1e-15,
uncertainty=False)
# train the model based on the training dataset
trained_model = AFF_train.train(task,sig_candid_F = np.arange(10,20,10))
# predict the force-field using the trained_model
prediction=AFF_train.predict(task = task,
trained_model = trained_model,
R_test = task['R_test'][[0,1],:,:])
# force field prediction
predicted_force = prediction['predicted_force']