- TCP
# need set YOUR_Data_PATH
python tools/gen_tcp_data.py- ADMLP
# need set YOUR_Data_PATH
python tools/gen_admlp_data.pyFirst, set the dataset path in TCP/config.py or ADMLP/config.py.
Training:
cd Bench2Drive-Zoo/
# TCP
export PYTHONPATH=$PYTHONPATH:PATH_TO_TCP
python TCP/train.py --gpus NUM_OF_GPUS
# or
bash TCP/train.sh # need set your PATH_TO_TCP
# ADMLP
export PYTHONPATH=$PYTHONPATH:PATH_TO_ADMLP
python ADMLP/train.py --gpus NUM_OF_GPUS
# or
bash ADMLP/train.sh # need set your PATH_TO_ADMLP # TCP
export PYTHONPATH=$PYTHONPATH:PATH_TO_TCP
python TCP/test.py
# ADMLP
export PYTHONPATH=$PYTHONPATH:PATH_TO_ADMLP
python ADMLP/test.pyPlease follow these steps to evaluate TCP/ADMLP in Carla:
# Add your agent code
cd Bench2Drive/leaderboard
mkdir team_code
cd Bench2Drive/leaderboard/team_code
ln -s YOUR_TEAM_AGENT ./ # link your agent code
cd Bench2Drive/
ln -s Bench2DriveZoo/team_code/* ./ # link entire repo to Bench2DriveFollow this to use evaluation tools of Bench2Drive.