This repo contains our proposed RS image dehazing model PCSformer and the two proposed benchmarks, namely Hazy-DIOR and Hazy-LoveDA.
git clone https://github.com/SmileShaun/PCSformer.git
cd PCSformer
pip install -r requirements.txt
cd loss/robust_loss_pytorch
pip install -e .[dev]
Please first set 'train_data_dir' and 'val_data_dir' in config.py (This is the path to your own dataset), then python train.py.
- Hazy-DIOR: https://huggingface.co/datasets/SmileShaun/Hazy-DIOR
- Hazy-LoveDA: https://huggingface.co/datasets/SmileShaun/Hazy-LoveDA
Hazy-DIOR/Hazy-LoveDA
├── train
│ ├── haze
│ │ │── 00001.png
│ │ │── 00002.png
│ │ ├── ...
│ ├── gt
│ │ ├── 00001.png
│ │ ├── 00002.png
│ │ ├── ...
├── val
│ ├── haze
│ │ ├── 00001.png
│ │ ├── 00002.png
│ │ ├── ...
│ ├── gt
│ │ ├── 00001.png
│ │ ├── 00002.png
│ │ ├── ...
├── test
│ ├── haze
│ │ ├── thin
│ │ │ ├── 00001.png
│ │ │ ├── 00002.png
│ │ │ ├── ...
│ │ ├── moderate
│ │ │ ├── 00001.png
│ │ │ ├── 00002.png
│ │ │ ├── ...
│ │ ├── thick
│ │ │ ├── 00001.png
│ │ │ ├── 00002.png
│ │ │ ├── ...
│ ├── gt
│ │ ├── thin
│ │ │ ├── 00001.png
│ │ │ ├── 00002.png
│ │ │ ├── ...
│ │ ├── moderate
│ │ │ ├── 00001.png
│ │ │ ├── 00002.png
│ │ │ ├── ...
│ │ ├── thick
│ │ │ ├── 00001.png
│ │ │ ├── 00002.png
│ │ │ ├── ...
If you use this codebase or the proposed benchmarks, please kindly cite our work:
@article{zhang2024proxy,
title={Proxy and Cross-Stripes Integration Transformer for Remote Sensing Image Dehazing},
author={Zhang, Xiaozhe and Xie, Fengying and Ding, Haidong and Yan, Shaocheng and Shi, Zhenwei},
journal={IEEE Transactions on Geoscience and Remote Sensing},
year={2024},
publisher={IEEE}
}